GPU资源的监控和报警,支撑高效深度学习的利器

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 本文将介绍如何利用阿里云容器服务的机器学习解决方案在几分钟内轻松设置GPU资源使用率,显存使用率和温度的报警机制,达到对于一些GPU潜在问题的先知先觉,避免不必要损失的目的。

本系列将利用阿里云容器服务的机器学习解决方案,帮助您了解和掌握TensorFlow,MXNet等深度学习库,开启您的深度学习之旅。

大家通过第一篇文章对深度学习技术有了感性的认知后,就开始关心如果真正希望用深度学习技术解决问题时,有哪些问题需要注意。这里分享一下深度学习训练过程中一些常见的问题以及对应的解决办法。

多数深度学习的模型训练通常会花费大量的时间,短的有一到两周,长的甚至有几个月的时间。而在这期间,由于GPU状态不正常导致模型训练中断,甚至影响模型训练结果出现较大偏差的现象也屡见不鲜。这对于数据科学家来说,是无法承受之痛。

过去好多数据科学家为了解决这一问题,在训练程序启动之后不断登录到GPU主机上,一次一次的运行nvidia-smi。这种做法的问题在于无法及时发现问题;同时也浪费了数据科学家大量的时间。

本文将介绍如何利用阿里云容器服务的机器学习解决方案在几分钟内轻松设置GPU资源使用率显存使用率温度的报警机制,达到对于一些GPU潜在问题的先知先觉,避免不必要损失的目的。

配置GPU资源监控报警

首先创建GPU容器集群,这里我们就可以得到一个GPU集群,请留意集群名称

登录到云监控页面,根据集群名找到对应的集群,并且点击节点监控

跳到容器集群节点的列表页,选择集群下的任意一个节点,点击监控图表

这里可看到节点级别资源监控,其中包括GPU的使用率,显存使用率和温度。其中GPU的温度是反映GPU卡工作状态的重要指标,当GPU的温度高到一定程度的时候,会导致GPU hang等潜在的严重问题。如果能够提前洞察这一潜在问题,并且报警给相应的数据科学家,从而提前主动做一些checkpoint的保存,就可以提高训练的有效性,避免硬件问题造成的训练时间浪费的问题。这里可以通过点击报警按钮快速配置

当报警设置页面弹出后,首先配置关联资源,将实例列表下拉选择全选将集群中所有的机器添加到报警监控中。

设置报警规则,这里使用的监控维度是GPU温度,要求5分钟的平均值大于等于70摄氏度时报警;同时设置报警条件,这里是5分钟内连续5次超过阈值就报警。

设置报警通知,请先按照文档创建云监控的报警联系人和联系组GPU监控,并且添加钉钉机器人

选择GPU监控组作为通知对象,并且选择默认的通知方式和内容

创建模型训练环境,运行neural-style模型训练

为了测试报警功能,这里我们运行一个可以触发报警条件的neural-style模型训练应用。具体来说:

登录到容器服务解决方案,在 模型训练 中点击 创建

这样,就可以看到一个表单。首先通过下拉框选择刚才创建的集群名称,点击训练框架 ,这时可以看到一系列深度学习框架的列表,其中包括TensorFlow, Keras和MXNet的不同版本, 还可以指定python2和python3的版本,这里我选择自定义镜像,并且配置其他选项,点击确定

以下为具体配置:

  • 训练框架: 自定义镜像
  • 镜像地址: registry.cn-beijing.aliyuncs.com/cheyang/neural-style:latest
  • GPU数量: 1
  • 数据卷名: 不使用数据卷
  • 执行命令: python neural_style.py --iterations 50000 --content /neural-style/examples/1-content.jpg --styles /neural-style/examples/1-style.jpg --output /neural-style/output.jpg

接收报警信息

稍等片刻我们就可以看到在钉钉机器人报警GPU温度过高,并且可以精确指明温度过高的GPU卡号为/dev/nivdia0,所在机器的实例id为i-wz9b6v2187e05zslh3xv,以及高温温度为75摄氏度

通过报警中的http链接,还可以通过报警历史看到具体的监控细节:

总结

不论在传统的DevOps还是现在火爆的AIOps中,系统资源的监控和报警都扮演着非常重要的角色,特别是GPU维度的监控对于一次完整并且结果可靠的深度学习训练有着重要的意义,基于容器服务的机器学习解决方案帮助您从不知不觉先知先觉 ,端到端的掌控深度学习模型训练的整个生命周期。

欢迎扫码加入钉钉群一起讨论:

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
20天前
|
机器学习/深度学习 测试技术 PyTorch
深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
32 5
|
3月前
|
机器学习/深度学习 测试技术 PyTorch
深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
287 2
|
4月前
|
机器学习/深度学习 并行计算 PyTorch
如何搭建深度学习的多 GPU 服务器
如何搭建深度学习的多 GPU 服务器
147 5
如何搭建深度学习的多 GPU 服务器
|
4月前
|
机器学习/深度学习 人工智能 调度
显著提升深度学习 GPU 利用率,阿里云拿下国际网络顶会优胜奖!
显著提升深度学习 GPU 利用率,阿里云拿下国际网络顶会优胜奖!
316 7
|
6月前
|
机器学习/深度学习 并行计算 算法框架/工具
为什么深度学习模型在GPU上运行更快?
为什么深度学习模型在GPU上运行更快?
80 2
|
6月前
|
机器学习/深度学习 并行计算 PyTorch
【从零开始学习深度学习】20. Pytorch中如何让参数与模型在GPU上进行计算
【从零开始学习深度学习】20. Pytorch中如何让参数与模型在GPU上进行计算
|
7月前
|
机器学习/深度学习 弹性计算 自然语言处理
【阿里云弹性计算】深度学习训练平台搭建:阿里云 ECS 与 GPU 实例的高效利用
【5月更文挑战第28天】阿里云ECS结合GPU实例为深度学习提供高效解决方案。通过弹性计算服务满足大量计算需求,GPU加速训练。用户可按需选择实例规格,配置深度学习框架,实现快速搭建训练平台。示例代码展示了在GPU实例上使用TensorFlow进行训练。优化包括合理分配GPU资源和使用混合精度技术,应用涵盖图像识别和自然语言处理。注意成本控制及数据安全,借助阿里云推动深度学习发展。
265 2
|
7月前
|
机器学习/深度学习 并行计算 TensorFlow
TensorFlow与GPU加速:提升深度学习性能
【4月更文挑战第17天】本文介绍了TensorFlow如何利用GPU加速深度学习, GPU的并行处理能力适合处理深度学习中的矩阵运算,显著提升性能。TensorFlow通过CUDA和cuDNN库支持GPU,启用GPU只需简单代码。GPU加速能减少训练时间,使训练更大、更复杂的模型成为可能,但也需注意成本、内存限制和编程复杂性。随着技术发展,GPU将继续在深度学习中发挥关键作用,而更高效的硬件解决方案也将备受期待。
|
7月前
|
机器学习/深度学习 并行计算 算法框架/工具
Anaconda+Cuda+Cudnn+Pytorch(GPU版)+Pycharm+Win11深度学习环境配置
Anaconda+Cuda+Cudnn+Pytorch(GPU版)+Pycharm+Win11深度学习环境配置
1016 3
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习与GPU集群的神奇结合
深度学习与GPU集群的神奇结合 随着人工智能的飞速发展,深度学习和神经网络已经成为了AI领域的热点。然而,你是否知道,为了让这些复杂模型运行得更加高效,有一种强大的工具不可或缺,那就是GPU。今天,我们就来揭开GPU与深度学习之间的神秘面纱。
109 1