Redis 读写分离技术架构解析

简介: Redis 不管主从版还是集群规格,replica作为备库不对外提供服务,只有在发生HA的时候,replica提升为master后才承担读写流量。这种架构读写请求都在master上完成,一致性较高,但性能受到m


背景

Redis 不管主从版还是集群规格,replica作为备库不对外提供服务,只有在发生HA的时候,replica提升为master后才承担读写流量。这种架构读写请求都在master上完成,一致性较高,但性能受到master数量的限制 。经常有用户数据较少,但因为流量或者并发太高而不得不升级到更大的集群规格。

为满足读多写少的业务场景,最大化节约用户成本,云数据库Redis版推出了读写分离规格,为用户提供透明、高可用、高性能、高灵活的读写分离服务

架构

Redis集群模式有redis-proxy、master、replica、HA等几个角色。在读写分离实例中,新增read-only replica角色来承担读流量,replica作为热备不提供服务,架构上保持对现有集群规格的兼容性。redis-proxy按权重将读写请求转发到master或者某个read-only replica上;HA负责监控DB节点的健康状态,异常时发起主从切换或重搭read-only replica,并更新路由

一般来说,根据master和read-only replica的数据同步方式,可以分为两种架构:星型复制和链式复制。

星型复制

星型复制就是将所有的read-only replica直接和master保持同步,每个read-only replica之间相互独立,任何一个节点异常不影响到其他节点,同时因为复制链比较短,read-only replica上的复制延迟比较小。

Redis是单进程单线程模型,主从之间的数据复制也在主线程中处理,read-only replica数量越多,数据同步对master的CPU消耗就越严重,集群的写入性能会随着read-only replica的增加而降低。此外,星型架构会让master的出口带宽随着read-only replica的增加而成倍增长。Master上较高的CPU和网络负载会抵消掉星型复制延迟较低的优势,因此,星型复制架构会带来比较严重的扩展问题,整个集群的性能会受限于master

image.png

链式复制

链式复制将所有的read-only replica组织成一个复制链,如下图所示,master只需要将数据同步给replica和复制链上的第一个read-only replica。

链式复制解决了星型复制的扩展问题,理论上可以无限增加read-only replica的数量,随着节点的增加整个集群的性能也可以基本上呈线性增长

链式复制的架构下,复制链越长,复制链末端的read-only replica和master之间的同步延迟就越大 ,考虑到读写分离主要使用在对一致性要求不高的场景下,这个缺点一般可以接受。但是如果复制链中的某个节点异常,会导致下游的所有节点数据都会大幅滞后。更加严重的是这可能带来全量同步,并且全量同步将一直传递到复制链的末端,这会对服务带来一定的影响 。为了解决这个问题,读写分离的Redis都使用阿里云优化后的binlog复制版本,最大程度的降低全量同步的概率。

image.png

Redis读写分离优势

透明兼容

读写分离和普通集群规格一样,都使用了redis-proxy做请求转发,多分片令使用存在一定的限制,但从主从升级单分片读写分离,或者从集群升级到多分片的读写分离集群可以做到完全兼容。

用户和redis-proxy建立连接,redis-proxy会识别出客户端连接发送过来的请求是读还是写,然后按照权重作负载均衡,将请求转发到后端不同的DB节点中,写请求转发给master,读操作转发给read-only replica(master默认也提供读,可以通过权重控制)。

用户只需要购买读写分离规格的实例,直接使用任何客户端即可直接使用,业务不用做任何修改就可以开始享受读写分离服务带来的巨大性能提升,接入成本几乎为0。

高可用

高可用模块(HA)监控所有DB节点的健康状态,为整个实例的可用性保驾护航。master宕机时自动切换到新主。如果某个read-only replica宕机,HA也能及时感知,然后重搭一个新的read-only replica,下线宕机节点。

除HA之外,redis-proxy也能实时感知每个read-only replica的状态。在某个read-only replica异常期间,redis-proxy会自动降低这个节点的权重,如果发现某个read-only replica连续失败超过一定次数以后,会暂时屏蔽异常节点,直到异常消失以后才会恢复其正常权重。

redis-proxy和HA一起做到尽量减少业务对后端异常的感知,提高服务可用性。

高性能

对于读多写少的业务场景,直接使用集群版本往往不是最合适的方案,现在读写分离提供了更多的选择,业务可以根据场景选择最适合的规格,充分利用每一个read-only replica的资源

目前单shard对外售卖1 master + 1/3/5 read-only replica多种规格(如果有更大的需求可以提工单反馈),提供60万QPS和192 MB/s的服务能力,在完全兼容所有命令的情况下突破单机的资源限制。后续将去掉规格限制,让用户根据业务流量随时自由的增加或减少read-only replica数量。

image.png

Redis主从异步复制,从read-only replica中可能读到旧的数据,使用读写分离需要业务可以容忍一定程度的数据不一致,后续将会给客户更灵活的配置和更大的自由,例如配置可以容忍的最大延迟时间

相关文章
|
2月前
|
缓存 运维 监控
Redis 7.0 高性能缓存架构设计与优化
🌟蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕Redis 7.0高性能缓存架构,探索函数化编程、多层缓存、集群优化与分片消息系统,用代码在二进制星河中谱写极客诗篇。
|
3月前
|
存储 监控 NoSQL
Redis高可用架构全解析:从主从复制到集群方案
Redis高可用确保服务持续稳定,避免单点故障导致数据丢失或业务中断。通过主从复制实现数据冗余,哨兵模式支持自动故障转移,Cluster集群则提供分布式数据分片与水平扩展,三者层层递进,保障读写分离、容灾切换与大规模数据存储,构建高性能、高可靠的Redis架构体系。
|
8月前
|
机器学习/深度学习 文字识别 监控
安全监控系统:技术架构与应用解析
该系统采用模块化设计,集成了行为识别、视频监控、人脸识别、危险区域检测、异常事件检测、日志追溯及消息推送等功能,并可选配OCR识别模块。基于深度学习与开源技术栈(如TensorFlow、OpenCV),系统具备高精度、低延迟特点,支持实时分析儿童行为、监测危险区域、识别异常事件,并将结果推送给教师或家长。同时兼容主流硬件,支持本地化推理与分布式处理,确保可靠性与扩展性,为幼儿园安全管理提供全面解决方案。
424 3
|
3月前
|
SQL 弹性计算 关系型数据库
如何用读写分离构建高效稳定的数据库架构?
在少写多读业务场景中,主实例读请求压力大,影响性能。通过创建只读实例并使用数据库代理实现读写分离,可有效降低主实例负载,提升系统性能与可用性。本文详解配置步骤,助你构建高效稳定的数据库架构。
|
4月前
|
存储 NoSQL 算法
Redis的集群架构与使用经验
本文介绍了Redis的集群架构与使用经验,包括主从复制、哨兵集群及Cluster分片集群的应用场景与实现原理。内容涵盖Redis主从同步机制、数据分片存储方式、事务支持及与Memcached的区别,并讨论了Redis内存用尽时的处理策略。适用于了解Redis高可用与性能优化方案。
|
8月前
|
存储 NoSQL Redis
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 +  无锁架构 +  EDA架构  + 异步日志 + 集群架构
|
9月前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
1173 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
9月前
|
存储 机器学习/深度学习 应用服务中间件
阿里云服务器架构解析:从X86到高性能计算、异构计算等不同架构性能、适用场景及选择参考
当我们准备选购阿里云服务器时,阿里云提供了X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等多种架构,每种架构都有其独特的特点和适用场景。本文将详细解析这些架构的区别,探讨它们的主要特点和适用场景,并为用户提供选择云服务器架构的全面指南。
996 18
|
9月前
|
算法 前端开发 定位技术
地铁站内导航系统解决方案:技术架构与核心功能设计解析
本文旨在分享一套地铁站内导航系统技术方案,通过蓝牙Beacon技术与AI算法的结合,解决传统导航定位不准确、路径规划不合理等问题,提升乘客出行体验,同时为地铁运营商提供数据支持与增值服务。 如需获取校地铁站内智能导航系统方案文档可前往文章最下方获取,如有项目合作及技术交流欢迎私信我们哦~
677 1
|
10月前
|
存储 人工智能 并行计算
2025年阿里云弹性裸金属服务器架构解析与资源配置方案
🚀 核心特性与技术创新:提供100%物理机性能输出,支持NVIDIA A100/V100 GPU直通,无虚拟化层损耗。网络与存储优化,400万PPS吞吐量,ESSD云盘IOPS达100万,RDMA延迟<5μs。全球部署覆盖华北、华东、华南及海外节点,支持跨地域负载均衡。典型应用场景包括AI训练、科学计算等,支持分布式训练和并行计算框架。弹性裸金属服务器+OSS存储+高速网络综合部署,满足高性能计算需求。

热门文章

最新文章

推荐镜像

更多
  • DNS