人工智能在“偏见”的十字路口徘徊

简介: 对许多商业组织来说,同人工智能(AI)的偏见作斗争的难度比预期要大。

随着企业将更多机器学习和人工智能模型投入生产,人们越来越意识到自己的系统存在偏见。这种偏见不仅可能导致AI系统做出更糟糕的决定,还可能使运行AI系统的组织陷入法律危机。偏见可以渗透到应用于各种行业的AI系统中。

532186466cabaaeea48b22a5c8319ba7.jpg

哈佛大学和埃森哲公司在去年发布的一份报告中展示了算法偏见如何潜入人力资源部门的招聘流程。在2021年的联合报告《隐藏的员工:未开发的人才》中,不当的职位描述和严重依赖算法进行招聘广告发布和简历评估的自动化招聘系统,是怎样阻止合格的个人找到工作。

偏见导致了两个最坏情况。尽管企业在技术上花费了大量金钱,系统仍固守着以往错误的做法,而且效率更高,结果更差。

警务是另一个容易因算法偏见而产生意外后果的领域。某些警务预测产品被证明对特定社区的犯罪预测和种族之间存在显著的相关性,这种流行的预测性警务产品可能对少数族裔存在偏见。研究发现在美国,居住在一个地区的白人居民越少,而居住在那里的黑人和拉丁裔居民越多,该产品预测发生犯罪的可能性就越大。同样的差距也存在于富裕和贫困社区之间。

DataRobot在一项针对美国和英国各行业350家机构的调查中,超过一半的机构表示,他们非常担心人工智能偏见可能会伤害他们的客户和自己。

该调查显示,54%的美国受访者表示,对其组织中人工智能偏见的潜在危害感到“非常担忧”或“深感担忧”。而在2019年进行的一项类似研究中持相同观点的人占42%。调查显示,他们的英国同事对人工智能的偏见怀疑态度更深,64%的人表示他们也有这种看法。

而调查中超过三分之一(36%)的受访者说,他们的组织已经因AI偏见受到影响,收入损失和失去客户是最常见的后果。

消费者信任的丧失被认为是人工智能偏见的第一大潜在风险,56%的受访者提到了这一风险因素,其次是品牌声誉受损、监管审查增加、员工信任的丧失、与个人道德不符、诉讼和股票价值的下降。

虽然有四分之三的受访机构称计划对AI偏见进行检测,约四分之一的组织说他们“非常有信心”有能力来检测AI偏见。

受访者列举了消除偏见的几个具体挑战,包括:难以理解人工智能模型为什么会做出决定;理解输入值和模型决策之间的模式;对算法缺乏信任;训练数据的清晰性;保持AI模型的动态更新;教育利益相关者识别人工智能偏见;以及也不清楚什么是偏见。

那么,如何解决人工智能中的偏见问题呢?首先,81%的受访者表示,他们认为“政府监管将有助于定义和防止人工智能偏见。”该调查称,在没有政府监管的情况下,约三分之一的人担心人工智能“会伤害用户”。但同时45%的受访者表示,他们担心政府监管会增加成本,使采用人工智能变得更加困难。只有约23%的人表示,他们不担心政府对人工智能的监管。

总而言之,在人工智能的偏见问题上,似乎正处于十字路口。随着采用人工智能日益被视为现代企业的必备条件,采用这项技术的压力相当大。企业越来越担心人工智能带来的意外后果,尤其是在道德方面。

人工智能领域的从业者需要了解并理解人工智能和道德的重要性和影响。消除偏见的核心挑战是理解为什么算法会首先做出这样的决定。在应对人工智能偏见和随之而来的复杂问题时,需要规则和条例来指导。如今,国际组织和产业巨头已经开始研究人工智能原则和法规,但要确保模型公平、可信和可解释,还有更多工作要做。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

相关文章
|
5月前
|
机器学习/深度学习 人工智能 算法
人工智能伦理:机器学习中的数据偏见与公平性挑战
在机器学习领域,算法的公正性与透明度日益成为社会关注的焦点。本文深入探讨了AI系统在处理数据时可能遇到的偏见问题及其对社会公平性的影响。通过分析具体案例和最新研究成果,本文揭示了数据偏见如何影响算法决策,并提出了减轻这些偏见的策略。文章呼吁开发更加负责任的AI系统,以促进技术与社会价值的和谐共存。
|
机器学习/深度学习 人工智能 算法
探究根源:自动决策已成为生活的一部分,那机器学习和人工智能有哪些偏见?
昨天我做了一个关于人工智能中的偏见的12分钟演讲。首先需要指出,我并不是这方面的专家,其中大部分是通过阅读相关方面的研究文章的总结。 而这篇文章就是对这个演讲的文字描述。
3724 0
|
1天前
|
机器学习/深度学习 人工智能 监控
人工智能在医疗健康领域的创新应用
本文旨在探讨人工智能技术在医疗健康领域的创新应用。通过分析AI如何助力疾病诊断、治疗计划制定、患者监护以及药物研发,本文揭示了AI技术为现代医疗服务带来的革命性变化。此外,文章还讨论了实施这些技术时面临的挑战和未来发展趋势,为医疗行业的数字化转型提供了深入见解。
|
2天前
|
人工智能 自然语言处理 自动驾驶
深入理解ChatGPT:下一代人工智能助手的开发与应用
【10月更文挑战第27天】本文深入探讨了ChatGPT的技术原理、开发技巧和应用场景,展示了其在语言理解和生成方面的强大能力。文章介绍了基于Transformer的架构、预训练与微调技术,以及如何定制化开发、确保安全性和支持多语言。通过实用工具如GPT-3 API和Fine-tuning as a Service,开发者可以轻松集成ChatGPT。未来,ChatGPT有望在智能家居、自动驾驶等领域发挥更大作用,推动人工智能技术的发展。
|
5天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在医疗健康领域的应用
【10月更文挑战第25天】 本文深入探讨了人工智能(AI)技术在医疗健康领域的现状与未来趋势。通过对AI技术在疾病诊断、治疗方案优化、患者管理等方面的应用案例分析,揭示了AI如何助力提高医疗服务效率和质量。文章还讨论了AI技术面临的挑战,包括数据安全、伦理问题以及技术普及的障碍,并提出了相应的解决策略。通过本文,读者将对AI在医疗健康领域的潜力和挑战有一个全面的认识。
22 2
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的无限可能:技术前沿与应用实践
【10月更文挑战第23天】探索人工智能的无限可能:技术前沿与应用实践
|
9天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用及其挑战
【10月更文挑战第22天】人工智能技术正逐渐渗透到我们生活的方方面面,尤其是在医疗领域,它展现出了巨大的潜力。从辅助医生进行疾病诊断到预测患者病情的发展,AI的应用正在改变着传统的医疗模式。然而,随之而来的是一系列挑战,包括数据隐私、算法偏见以及医患关系的重新定位等问题。本文将探讨AI在医疗诊断中的应用实例,并分析面临的主要挑战,以期对未来的医疗AI应用提供深入的见解和建议。
|
9天前
|
传感器 人工智能 自动驾驶
人工智能在自动驾驶汽车中的应用
【10月更文挑战第31天】人工智能在自动驾驶汽车中的应用是科技进步与汽车产业转型的产物。通过计算机视觉、雷达、LiDAR和超声波传感器等技术,自动驾驶汽车实现了精准感知;借助复杂AI算法,实现决策与控制、路径规划与导航。尽管面临技术成熟度、法规与伦理、公众接受度等挑战,但未来自动驾驶汽车有望在全球范围内实现商业化普及,彻底改变出行方式,提高道路安全,减少交通拥堵,促进绿色出行。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能技术在金融领域的应用有哪些?
【10月更文挑战第16天】人工智能技术在金融领域的应用有哪些?
398 1

热门文章

最新文章