Apache Kafka源码分析 - KafkaApis

简介:

kafka apis反映出kafka broker server可以提供哪些服务,
broker server主要和producer,consumer,controller有交互,搞清这些api就清楚了broker server的所有行为

 

handleOffsetRequest

提供对offset的查询的需求,比如查询earliest,latest offset是什么,或before某个时间戳的offset是什么

复制代码
   try {
        // ensure leader exists
        // 确定是否是leader replica,因为只有leader可以响应offset请求
        // 如果不是会抛异常
        val localReplica = if(!offsetRequest.isFromDebuggingClient)
          replicaManager.getLeaderReplicaIfLocal(topicAndPartition.topic, topicAndPartition.partition)
        else
          replicaManager.getReplicaOrException(topicAndPartition.topic, topicAndPartition.partition)
        val offsets = {
          val allOffsets = fetchOffsets(replicaManager.logManager,  //获取offsets列表
                                        topicAndPartition,
                                        partitionOffsetRequestInfo.time,
                                        partitionOffsetRequestInfo.maxNumOffsets)
          if (!offsetRequest.isFromOrdinaryClient) {
            allOffsets
          } else {
            val hw = localReplica.highWatermark.messageOffset
            if (allOffsets.exists(_ > hw))   //过滤掉hw以后的offsets,因为那些都不是应该用户可见的
              hw +: allOffsets.dropWhile(_ > hw)
            else 
              allOffsets
          }
        }
        (topicAndPartition, PartitionOffsetsResponse(ErrorMapping.NoError, offsets))
      } catch {
        // NOTE: UnknownTopicOrPartitionException and NotLeaderForPartitionException are special cased since these error messages
        // are typically transient and there is no value in logging the entire stack trace for the same
        case utpe: UnknownTopicOrPartitionException =>
          warn("Offset request with correlation id %d from client %s on partition %s failed due to %s".format(
               offsetRequest.correlationId, offsetRequest.clientId, topicAndPartition, utpe.getMessage))
          (topicAndPartition, PartitionOffsetsResponse(ErrorMapping.codeFor(utpe.getClass.asInstanceOf[Class[Throwable]]), Nil) )
        case nle: NotLeaderForPartitionException =>
          warn("Offset request with correlation id %d from client %s on partition %s failed due to %s".format(
               offsetRequest.correlationId, offsetRequest.clientId, topicAndPartition,nle.getMessage))
          (topicAndPartition, PartitionOffsetsResponse(ErrorMapping.codeFor(nle.getClass.asInstanceOf[Class[Throwable]]), Nil) )
        case e: Throwable =>
          warn("Error while responding to offset request", e)
          (topicAndPartition, PartitionOffsetsResponse(ErrorMapping.codeFor(e.getClass.asInstanceOf[Class[Throwable]]), Nil) )
      }
复制代码

可以看到,当没有找到topic->partition, 或partition leader,或其他异常的时候,就会导致返回offsets为nil
这样在客户端,经常通过获取latestOffset来算spoutLag,会出现负值的情况

然后,fetchOffset调用fetchOffsetsBefore,来完成offset的获取,

复制代码
def fetchOffsetsBefore(log: Log, timestamp: Long, maxNumOffsets: Int): Seq[Long] = {
    val segsArray = log.logSegments.toArray   //取出所有segments
    var offsetTimeArray: Array[(Long, Long)] = null
    if(segsArray.last.size > 0)   //看最新的segment,即真正被写入的,是否有数据(Segment.size取出segment中log的bytes)
      offsetTimeArray = new Array[(Long, Long)](segsArray.length + 1)
    else
      offsetTimeArray = new Array[(Long, Long)](segsArray.length)

    for(i <- 0 until segsArray.length)
      offsetTimeArray(i) = (segsArray(i).baseOffset, segsArray(i).lastModified) //对每个segment, 生成(baseOffset,最后更新的时间)
    if(segsArray.last.size > 0)
      offsetTimeArray(segsArray.length) = (log.logEndOffset, SystemTime.milliseconds) //对于最新的segment逻辑不同,这里取的是log.logEndOffset,有点tricky,因为只有取latest offset时才会取到最后这个

    var startIndex = -1
    timestamp match {
      case OffsetRequest.LatestTime =>
        startIndex = offsetTimeArray.length - 1 //Latest,取的其实是log.logEndOffset
      case OffsetRequest.EarliestTime =>
        startIndex = 0  //earlist, 取的是第一个segment的baseOffset
      case _ =>  //对某一个时间,去offset
        var isFound = false
        debug("Offset time array = " + offsetTimeArray.foreach(o => "%d, %d".format(o._1, o._2)))
        startIndex = offsetTimeArray.length - 1
        while (startIndex >= 0 && !isFound) {  //从最后一个segment开始,向前遍历
          if (offsetTimeArray(startIndex)._2 <= timestamp) //找到小于等于timestamp的segment 
            isFound = true
          else
            startIndex -=1
        }
    }

    val retSize = maxNumOffsets.min(startIndex + 1) //选择返回几个offset
    val ret = new Array[Long](retSize)
    for(j <- 0 until retSize) {
      ret(j) = offsetTimeArray(startIndex)._1  //返回当前segment,往前的所有segment的baseoffset
      startIndex -= 1
    }
    // ensure that the returned seq is in descending order of offsets
    ret.toSeq.sortBy(- _)
  }
复制代码

 

handleProducerOrOffsetCommitRequest

这个用于处理Producer的请求,其实就是写数据
名字有些tricky,和offsetCommit有什么关系,因为对于kafka的highlevel consumer,consumeroffset是被写入kafka topic的,所以offsetCommitRequest其实就是一种特殊的producer request
你看他实际也是,用producerRequestFromOffsetCommit,将它转换成了producer request

主要调用appendToLocalLog,核心逻辑

复制代码
val partitionOpt = replicaManager.getPartition(topicAndPartition.topic, topicAndPartition.partition) //取到partition,如果没有找到,抛异常
        val info = partitionOpt match {
          case Some(partition) =>
            partition.appendMessagesToLeader(messages.asInstanceOf[ByteBufferMessageSet],producerRequest.requiredAcks)  //将数据写入
          case None => throw new UnknownTopicOrPartitionException("Partition %s doesn't exist on %d"
            .format(topicAndPartition, brokerId))
        }
复制代码

Partition.appendMessagesToLeader

复制代码
def appendMessagesToLeader(messages: ByteBufferMessageSet, requiredAcks: Int=0) = {
    inReadLock(leaderIsrUpdateLock) {
      val leaderReplicaOpt = leaderReplicaIfLocal()    //是否是leader replica
      leaderReplicaOpt match {
        case Some(leaderReplica) =>
          val log = leaderReplica.log.get   //取得replica.log
          val minIsr = log.config.minInSyncReplicas  //配置的最小isr的size
          val inSyncSize = inSyncReplicas.size  //当前isr真实的size

          // Avoid writing to leader if there are not enough insync replicas to make it safe
          if (inSyncSize < minIsr && requiredAcks == -1) {
            throw new NotEnoughReplicasException("Number of insync replicas for partition [%s,%d] is [%d], below required minimum [%d]"
              .format(topic,partitionId,minIsr,inSyncSize))
          }

          val info = log.append(messages, assignOffsets = true) //将message append到log
          // 当有新数据产生了,需要去触发delayedFetchRequest,consumer的fetch request当达到log end offset的时候是会block的,所以这里需要unblock
          // probably unblock some follower fetch requests since log end offset has been updated
          replicaManager.unblockDelayedFetchRequests(new TopicAndPartition(this.topic, this.partitionId))
          // we may need to increment high watermark since ISR could be down to 1
          maybeIncrementLeaderHW(leaderReplica)  //增加HW
          info
        case None => //如果找不到leader,往往是因为发生了迁移
          throw new NotLeaderForPartitionException("Leader not local for partition [%s,%d] on broker %d"
            .format(topic, partitionId, localBrokerId))
      }
    }
  }
复制代码

对于producer的写策略,取决于配置的acker机制,

acks = 0,那没有failover处理的,发就发了
acks = 1,当写leader replica成功后就返回,其他的replica都是通过fetcher去同步的,所以kafka是异步写
不过有数据丢失的风险,如果leader的数据没有来得及同步,leader挂了,那么会丢失数据
acks = –1, 要等待所有的replicas都成功后,才能返回
所以这里需要产生DelayedProducerRequest,这个request只有在所有的follower都fetch成功后才能reponse
所以DelayedProducerRequest会在fetch request中被触发unblock

复制代码
   if(produceRequest.requiredAcks == 0) {
      //acks == 0,即不需要ack,没啥需要特别做的
    } else if (produceRequest.requiredAcks == 1 ||  //acks == 1,即需要立即返回response
        produceRequest.numPartitions <= 0 ||  //没有要求取数据,因为request里面的partition数为0
        numPartitionsInError == produceRequest.numPartitions) {  //所有的partition都取失败了
      //这几种情况都需要立即返回
      requestChannel.sendResponse(new RequestChannel.Response(request, new BoundedByteBufferSend(response)))
    } else { //这个地方没加注释,应该是ack == -1的情况
      // create a list of (topic, partition) pairs to use as keys for this delayed request
      val producerRequestKeys = produceRequest.data.keys.toSeq
      val statuses = localProduceResults.map(r =>
        r.key -> DelayedProduceResponseStatus(r.end + 1, ProducerResponseStatus(r.errorCode, r.start))).toMap
      val delayedRequest =  new DelayedProduce(
        producerRequestKeys,
        request,
        produceRequest.ackTimeoutMs.toLong,
        produceRequest,
        statuses,
        offsetCommitRequestOpt)

      // add the produce request for watch if it's not satisfied, otherwise send the response back
      val satisfiedByMe = producerRequestPurgatory.checkAndMaybeWatch(delayedRequest)
      if (satisfiedByMe)
        producerRequestPurgatory.respond(delayedRequest)
    }
复制代码

 

handleFetchRequest

响应读数据的请求,来自consumer或follower fetcher

复制代码
def handleFetchRequest(request: RequestChannel.Request) {
    val fetchRequest = request.requestObj.asInstanceOf[FetchRequest]
    val dataRead = replicaManager.readMessageSets(fetchRequest)  //从replicaManager读出数据

    // if the fetch request comes from the follower,
    // update its corresponding log end offset
    if(fetchRequest.isFromFollower)     //如果是follower的fetch request,更新follower的leo,还可能需要更新ISR
      recordFollowerLogEndOffsets(fetchRequest.replicaId, dataRead.mapValues(_.offset))

    // check if this fetch request can be satisfied right away
    val bytesReadable = dataRead.values.map(_.data.messages.sizeInBytes).sum
    val errorReadingData = dataRead.values.foldLeft(false)((errorIncurred, dataAndOffset) =>
      errorIncurred || (dataAndOffset.data.error != ErrorMapping.NoError))
    //fetch request是可以delay的,但满足如下要求时是需要立刻返回
    // send the data immediately if 1) fetch request does not want to wait
    //                              2) fetch request does not require any data 
    //                              3) has enough data to respond
    //                              4) some error happens while reading data
    if(fetchRequest.maxWait <= 0 ||  //不想等
       fetchRequest.numPartitions <= 0 ||  //没有请求数据
       bytesReadable >= fetchRequest.minBytes ||  //读到的数据已足够
       errorReadingData) { //有异常
      debug("Returning fetch response %s for fetch request with correlation id %d to client %s"
        .format(dataRead.values.map(_.data.error).mkString(","), fetchRequest.correlationId, fetchRequest.clientId))
      val response = new FetchResponse(fetchRequest.correlationId, dataRead.mapValues(_.data))
      requestChannel.sendResponse(new RequestChannel.Response(request, new FetchResponseSend(response)))
    } else { //否则产生delay fetcher request,比如没新数据的时候,后续有数据时会unblock这些request
      debug("Putting fetch request with correlation id %d from client %s into purgatory".format(fetchRequest.correlationId,
        fetchRequest.clientId))
      // create a list of (topic, partition) pairs to use as keys for this delayed request
      val delayedFetchKeys = fetchRequest.requestInfo.keys.toSeq
      val delayedFetch = new DelayedFetch(delayedFetchKeys, request, fetchRequest.maxWait, fetchRequest,
        dataRead.mapValues(_.offset))

      // add the fetch request for watch if it's not satisfied, otherwise send the response back
      val satisfiedByMe = fetchRequestPurgatory.checkAndMaybeWatch(delayedFetch)
      if (satisfiedByMe)
        fetchRequestPurgatory.respond(delayedFetch)
    }
  }
复制代码

readMessageSets其实就是对每个topicAndPartititon调用readMessageSet

复制代码
private def readMessageSet(topic: String,
                             partition: Int,
                             offset: Long,
                             maxSize: Int,
                             fromReplicaId: Int): (FetchDataInfo, Long) = {
    // check if the current broker is the leader for the partitions
    val localReplica = if(fromReplicaId == Request.DebuggingConsumerId)
      getReplicaOrException(topic, partition)
    else
      getLeaderReplicaIfLocal(topic, partition) //判断是否是leader,非leader也不能响应fetch请求
    trace("Fetching log segment for topic, partition, offset, size = " + (topic, partition, offset, maxSize))
    //我的理解,fromReplicaId只有从follower来的fetch请求才会有
    val maxOffsetOpt =
      if (Request.isValidBrokerId(fromReplicaId))
        None  //从follower来的fetch请求,不需要设最大的offset,有多少读多少好了
      else  //对于普通的fetch请求,不能读超出hw offset
        Some(localReplica.highWatermark.messageOffset)
    val fetchInfo = localReplica.log match {
      case Some(log) =>
        log.read(offset, maxSize, maxOffsetOpt)
      case None =>
        error("Leader for partition [%s,%d] does not have a local log".format(topic, partition))
        FetchDataInfo(LogOffsetMetadata.UnknownOffsetMetadata, MessageSet.Empty)
    }
    (fetchInfo, localReplica.highWatermark.messageOffset)
  }
复制代码

如果是follower fetch request,需要做recordFollowerLogEndOffsets更新follower的leo,

复制代码
  private def recordFollowerLogEndOffsets(replicaId: Int, offsets: Map[TopicAndPartition, LogOffsetMetadata]) {
    debug("Record follower log end offsets: %s ".format(offsets))
    offsets.foreach {
      case (topicAndPartition, offset) =>
        replicaManager.updateReplicaLEOAndPartitionHW(topicAndPartition.topic, //更新LEO和HW
          topicAndPartition.partition, replicaId, offset) 
        //当一次follower fetch成功后,需要check之前的delayedProduceRequest是否可以response
        //因为ack=-1时,需要所有的follower都fetch成功后才能response
        // for producer requests with ack = -1, we need to check
        // if they can be unblocked after some follower's log end offsets have moved
        replicaManager.unblockDelayedProduceRequests(topicAndPartition)
    }
  }
复制代码

最终调用到ReplicaManager.updateReplicaLEOAndPartitionHW,并修正改partition的ISR

复制代码
def updateReplicaLEOAndPartitionHW(topic: String, partitionId: Int, replicaId: Int, offset: LogOffsetMetadata) = {
    getPartition(topic, partitionId) match {
      case Some(partition) =>
        partition.getReplica(replicaId) match {
          case Some(replica) =>
            replica.logEndOffset = offset //将follower的replica的leo设为当前取得的offset
            // check if we need to update HW and expand Isr
            partition.updateLeaderHWAndMaybeExpandIsr(replicaId) //更新ISR
            debug("Recorded follower %d position %d for partition [%s,%d].".format(replicaId, offset.messageOffset, topic, partitionId))
          case None =>
            throw new NotAssignedReplicaException(("Leader %d failed to record follower %d's position %d since the replica" +
              " is not recognized to be one of the assigned replicas %s for partition [%s,%d]").format(localBrokerId, replicaId,
              offset.messageOffset, partition.assignedReplicas().map(_.brokerId).mkString(","), topic, partitionId))

        }
      case None =>
        warn("While recording the follower position, the partition [%s,%d] hasn't been created, skip updating leader HW".format(topic, partitionId))
    }
  }
复制代码

最终调到partition.updateLeaderHWAndMaybeExpandIsr来更新ISR

复制代码
def updateLeaderHWAndMaybeExpandIsr(replicaId: Int) {
    inWriteLock(leaderIsrUpdateLock) {
      // check if this replica needs to be added to the ISR
      leaderReplicaIfLocal() match {  //只有当前的replica是leader,才能更新ISR
        case Some(leaderReplica) =>
          val replica = getReplica(replicaId).get
          val leaderHW = leaderReplica.highWatermark
          // For a replica to get added back to ISR, it has to satisfy 3 conditions- //满足下面3条就需要加到ISR中
          // 1. It is not already in the ISR
          // 2. It is part of the assigned replica list. See KAFKA-1097
          // 3. It's log end offset >= leader's high watermark 
          if (!inSyncReplicas.contains(replica) && //本身不在ISR中
            assignedReplicas.map(_.brokerId).contains(replicaId) && //在AR中
            replica.logEndOffset.offsetDiff(leaderHW) >= 0) { //当前的leo大于leader的HW, 说明已经追上了
            // expand ISR
            val newInSyncReplicas = inSyncReplicas + replica //扩展ISR
            info("Expanding ISR for partition [%s,%d] from %s to %s"
                 .format(topic, partitionId, inSyncReplicas.map(_.brokerId).mkString(","), newInSyncReplicas.map(_.brokerId).mkString(",")))
            // update ISR in ZK and cache
            updateIsr(newInSyncReplicas)  //把ISR更新到zk
            replicaManager.isrExpandRate.mark()
          }
          maybeIncrementLeaderHW(leaderReplica) 增加hw
        case None => // nothing to do if no longer leader
      }
    }
  }
复制代码

maybeIncrementLeaderHW

复制代码
private def maybeIncrementLeaderHW(leaderReplica: Replica) {
    val allLogEndOffsets = inSyncReplicas.map(_.logEndOffset) //取出ISR中所有replica的leo列表
    val newHighWatermark = allLogEndOffsets.min(new LogOffsetMetadata.OffsetOrdering) //取最小的作为新的hw,这样可以保证只有在所有replica都完成同步的offset,才会设为hw
    val oldHighWatermark = leaderReplica.highWatermark //当前旧的hw
    if(oldHighWatermark.precedes(newHighWatermark)) {  //判断新的hw一定要大于就的hw
      leaderReplica.highWatermark = newHighWatermark  //更新hw
      debug("High watermark for partition [%s,%d] updated to %s".format(topic, partitionId, newHighWatermark))
      // some delayed requests may be unblocked after HW changed
      val requestKey = new TopicAndPartition(this.topic, this.partitionId)
      replicaManager.unblockDelayedFetchRequests(requestKey)  //hw变化,触发unblockDelayedFetch很容易理解,有新数据,你之前block的读请求,可以继续读数据
      replicaManager.unblockDelayedProduceRequests(requestKey) //也触发unblock DelayedProduce,hw变化表示有数据完成所有replica同步,这样可以reponse produce request
    } else {
      debug("Skipping update high watermark since Old hw %s is larger than new hw %s for partition [%s,%d]. All leo's are %s"
        .format(oldHighWatermark, newHighWatermark, topic, partitionId, allLogEndOffsets.mkString(",")))
    }
  }
复制代码

 

handleControlledShutdownRequest

响应broker发来的shutdown请求,

复制代码
def handleControlledShutdownRequest(request: RequestChannel.Request) {
    val controlledShutdownRequest = request.requestObj.asInstanceOf[ControlledShutdownRequest]
    val partitionsRemaining = controller.shutdownBroker(controlledShutdownRequest.brokerId)
    val controlledShutdownResponse = new ControlledShutdownResponse(controlledShutdownRequest.correlationId,
      ErrorMapping.NoError, partitionsRemaining)
    requestChannel.sendResponse(new Response(request, new BoundedByteBufferSend(controlledShutdownResponse)))
  }
复制代码

单纯的调用,controller.shutdownBroker,这种是优雅的shutdown,会做很多的准备工作

复制代码
def shutdownBroker(id: Int) : Set[TopicAndPartition] = {

    if (!isActive()) { //如果当前broker不是controller,抛异常退出
      throw new ControllerMovedException("Controller moved to another broker. Aborting controlled shutdown")
    }

    controllerContext.brokerShutdownLock synchronized {
      info("Shutting down broker " + id)

      inLock(controllerContext.controllerLock) {
        if (!controllerContext.liveOrShuttingDownBrokerIds.contains(id)) //如果broker不存在,抛异常
          throw new BrokerNotAvailableException("Broker id %d does not exist.".format(id))

        controllerContext.shuttingDownBrokerIds.add(id)  //将broker加入真正shuttingDown的broker list
        debug("All shutting down brokers: " + controllerContext.shuttingDownBrokerIds.mkString(","))
        debug("Live brokers: " + controllerContext.liveBrokerIds.mkString(","))
      }

      val allPartitionsAndReplicationFactorOnBroker: Set[(TopicAndPartition, Int)] = //找出broker上所有的partition和replica
        inLock(controllerContext.controllerLock) {
          controllerContext.partitionsOnBroker(id)
            .map(topicAndPartition => (topicAndPartition, controllerContext.partitionReplicaAssignment(topicAndPartition).size))
        }

      allPartitionsAndReplicationFactorOnBroker.foreach {
        case(topicAndPartition, replicationFactor) =>
          // Move leadership serially to relinquish lock.
          inLock(controllerContext.controllerLock) {
            controllerContext.partitionLeadershipInfo.get(topicAndPartition).foreach { currLeaderIsrAndControllerEpoch =>
              if (replicationFactor > 1) { //如果打开副本机制,=1就是没有副本
                if (currLeaderIsrAndControllerEpoch.leaderAndIsr.leader == id) { //如果是leader
                  // If the broker leads the topic partition, transition the leader and update isr. Updates zk and
                  // notifies all affected brokers
                  partitionStateMachine.handleStateChanges(Set(topicAndPartition), OnlinePartition,
                    controlledShutdownPartitionLeaderSelector)    //主动做leader重新选举
                } else { //如果该broker上的replica不是leader,发送stopReplicas请求
                  // Stop the replica first. The state change below initiates ZK changes which should take some time
                  // before which the stop replica request should be completed (in most cases)
                  brokerRequestBatch.newBatch()
                  brokerRequestBatch.addStopReplicaRequestForBrokers(Seq(id), topicAndPartition.topic,
                    topicAndPartition.partition, deletePartition = false)
                  brokerRequestBatch.sendRequestsToBrokers(epoch, controllerContext.correlationId.getAndIncrement)

                  // If the broker is a follower, updates the isr in ZK and notifies the current leader
                  replicaStateMachine.handleStateChanges(Set(PartitionAndReplica(topicAndPartition.topic,
                    topicAndPartition.partition, id)), OfflineReplica)
                }
              }
            }
          }
      }
      def replicatedPartitionsBrokerLeads() = inLock(controllerContext.controllerLock) {
        trace("All leaders = " + controllerContext.partitionLeadershipInfo.mkString(","))
        controllerContext.partitionLeadershipInfo.filter {
          case (topicAndPartition, leaderIsrAndControllerEpoch) =>
            leaderIsrAndControllerEpoch.leaderAndIsr.leader == id && controllerContext.partitionReplicaAssignment(topicAndPartition).size > 1
        }.map(_._1)
      }
      replicatedPartitionsBrokerLeads().toSet
    }
  }
复制代码

这里做leader重新选举用的是controlledShutdownPartitionLeaderSelector
这个选举策略很简单,
排除了shuttingDownBroker的产生新的ISR,然后选择head作为新的leader

val newIsr = currentLeaderAndIsr.isr.filter(brokerId => !controllerContext.shuttingDownBrokerIds.contains(brokerId))
val newLeaderOpt = newIsr.headOption

 

handleTopicMetadataRequest,handleUpdateMetadataRequest

就是处理读取和更新MetadataCache的请求,

KafkaApis.metadataCache
首先看看MetaCache是什么?
复制代码
/**
 *  A cache for the state (e.g., current leader) of each partition. This cache is updated through
 *  UpdateMetadataRequest from the controller. Every broker maintains the same cache, asynchronously.
 */
private[server] class MetadataCache {
  private val cache: mutable.Map[String, mutable.Map[Int, PartitionStateInfo]] =
    new mutable.HashMap[String, mutable.Map[Int, PartitionStateInfo]]()
  private var aliveBrokers: Map[Int, Broker] = Map()
  private val partitionMetadataLock = new ReentrantReadWriteLock()
复制代码

可见cache为,Map[String, mutable.Map[Int, PartitionStateInfo],记录每个topic,每个partition的PartitionStateInfo

case class PartitionStateInfo(val leaderIsrAndControllerEpoch: LeaderIsrAndControllerEpoch,
                              val allReplicas: Set[Int])

包含,leaderIsrAndControllerEpoch,记录leader和isr
allReplicas记录所有的replicas,即AR,注意这里只会记录replica id,replica的具体情况,只会在replicaManager里面记录
这里为每个partition记录leaderIsrAndControllerEpoch,是不是有点浪费

而aliveBrokers,记录所有活的brokers的id和ip:port

所以也比较简单,这个cache在每个brokers之间是会被异步更新的,通过handleUpdateMetadataRequest

 

handleStopReplicaRequest

停止replica请求,一般是当broker stop或需要删除某replica时被调用

处理很简单,主要就是停止fetcher线程,并删除partition目录

stopReplicas

stopReplica,注意很多情况下是不需要真正删除replica的,比如宕机

 

handleLeaderAndIsrRequest

处理leaderAndIsr的更新,这个和handleUpdateMetadataRequest的区别是,不光更新cache,需要真正去做replica的leader切换
主要调用,
replicaManager.becomeLeaderOrFollower(leaderAndIsrRequest, offsetManager)
核心逻辑如下,前面那段主要是判断这个request是否有效,根据controllerEpoch和leaderEpoch

复制代码
def becomeLeaderOrFollower(leaderAndISRRequest: LeaderAndIsrRequest): (collection.Map[(String, Int), Short], Short) = {
    replicaStateChangeLock synchronized {// 加锁
      val responseMap = new collection.mutable.HashMap[(String, Int), Short]
      if(leaderAndISRRequest.controllerEpoch < controllerEpoch) { // 检查requset epoch
        (responseMap, ErrorMapping.StaleControllerEpochCode)
      } else {
        val controllerId = leaderAndISRRequest.controllerId
        val correlationId = leaderAndISRRequest.correlationId
        controllerEpoch = leaderAndISRRequest.controllerEpoch

        // First check partition's leader epoch
        // 前面只是检查了request的epoch,但是还要检查其中的每个partitionStateInfo中的leader epoch
        val partitionState = new HashMap[Partition, PartitionStateInfo]()
        leaderAndISRRequest.partitionStateInfos.foreach{ case ((topic, partitionId), partitionStateInfo) =>
          val partition = getOrCreatePartition(topic, partitionId, partitionStateInfo.replicationFactor) // get或创建partition,partition只是逻辑存在,所以也是创建partition对象
          val partitionLeaderEpoch = partition.getLeaderEpoch()
          // If the leader epoch is valid record the epoch of the controller that made the leadership decision.
          // This is useful while updating the isr to maintain the decision maker controller's epoch in the zookeeper path
          if (partitionLeaderEpoch < partitionStateInfo.leaderIsrAndControllerEpoch.leaderAndIsr.leaderEpoch) { // local的partitionLeaderEpoch要小于request中的leaderEpoch,否则就是过时的request 
            if(partitionStateInfo.allReplicas.contains(config.brokerId)) // 判断该partition是否被assigned给当前的broker
              partitionState.put(partition, partitionStateInfo) // 只将被分配到当前broker的partition放入partitionState,其中partition是当前的状况,partitionStateInfo是request中最新的状况
            else { }
          } else { // Received invalid LeaderAndIsr request
            // Otherwise record the error code in response
            responseMap.put((topic, partitionId), ErrorMapping.StaleLeaderEpochCode)
          }
        }

        //核心逻辑,判断是否为leader或follower,分别调用makeLeaders和makeFollowers
        val partitionsTobeLeader = partitionState  //从partitionState中筛选出以该broker为leader replica的
          .filter{ case (partition, partitionStateInfo) => partitionStateInfo.leaderIsrAndControllerEpoch.leaderAndIsr.leader == config.brokerId}
        val partitionsToBeFollower = (partitionState -- partitionsTobeLeader.keys)

        if (!partitionsTobeLeader.isEmpty) makeLeaders(controllerId, controllerEpoch, partitionsTobeLeader, leaderAndISRRequest.correlationId, responseMap)
        if (!partitionsToBeFollower.isEmpty) makeFollowers(controllerId, controllerEpoch, partitionsToBeFollower, leaderAndISRRequest.leaders, leaderAndISRRequest.correlationId, responseMap)

        // we initialize highwatermark thread after the first leaderisrrequest. This ensures that all the partitions
        // have been completely populated before starting the checkpointing there by avoiding weird race conditions
        if (!hwThreadInitialized) {
          startHighWaterMarksCheckPointThread() // 启动HighWaterMarksCheckPointThread,hw很重要,需要定期存到磁盘,这样failover的时候可以重新load
          hwThreadInitialized = true
        }
        replicaFetcherManager.shutdownIdleFetcherThreads() //关闭idle的fether,如果成为leader,就不需要fetch
        (responseMap, ErrorMapping.NoError)
      }
    }
  }
复制代码

replicaManager里面有个allPartitions,记录所有partition的情况,

private val allPartitions = new Pool[(String, Int), Partition]

其中Partition结构中,比较主要的数据是,

private val assignedReplicaMap = new Pool[Int, Replica]

这个记录brokerid和replica的对应关系

复制代码
def getOrCreatePartition(topic: String, partitionId: Int): Partition = {
    var partition = allPartitions.get((topic, partitionId))
    if (partition == null) {
      allPartitions.putIfNotExists((topic, partitionId), new Partition(topic, partitionId, time, this))
      partition = allPartitions.get((topic, partitionId))
    }
    partition
  }
复制代码

所以getOrCreatePartition,只是get当前replicaManager里面保存的该partiiton的情况

 

replicaManager.makeLeaders

关闭所有成为leader的replica对应的fetcher,然后关键是调用,

// Update the partition information to be the leader
      partitionState.foreach{ case (partition, partitionStateInfo) =>
        partition.makeLeader(controllerId, partitionStateInfo, correlationId)}

上面提到case (partition, partitionStateInfo)中,partition是replicaManager当前的情况,而partitionStateInfo中间放的是request的新的分配情况,

复制代码
def makeLeader(controllerId: Int,
                 partitionStateInfo: PartitionStateInfo, correlationId: Int,
                 offsetManager: OffsetManager): Boolean = {
    inWriteLock(leaderIsrUpdateLock) {
      val allReplicas = partitionStateInfo.allReplicas
      val leaderIsrAndControllerEpoch = partitionStateInfo.leaderIsrAndControllerEpoch
      val leaderAndIsr = leaderIsrAndControllerEpoch.leaderAndIsr
      // record the epoch of the controller that made the leadership decision. This is useful while updating the isr
      // to maintain the decision maker controller's epoch in the zookeeper path
      controllerEpoch = leaderIsrAndControllerEpoch.controllerEpoch
      // add replicas that are new
      allReplicas.foreach(replica => getOrCreateReplica(replica)) //request中allReplicas
      val newInSyncReplicas = leaderAndIsr.isr.map(r => getOrCreateReplica(r)).toSet //request中ISR中的所有replicas
      // remove assigned replicas that have been removed by the controller
      // assignedReplicas表示当前partition分配情况,需要根据allReplicas更新,如果replicaid不在allReplicas中,则需要从assignedReplicas中删除
      (assignedReplicas().map(_.brokerId) -- allReplicas).foreach(removeReplica(_))
      inSyncReplicas = newInSyncReplicas // 用request中的数据来更新当前partition中的
      leaderEpoch = leaderAndIsr.leaderEpoch
      zkVersion = leaderAndIsr.zkVersion
      leaderReplicaIdOpt = Some(localBrokerId)
      // construct the high watermark metadata for the new leader replica
      val newLeaderReplica = getReplica().get
      newLeaderReplica.convertHWToLocalOffsetMetadata() //对于新建的replica,只有offset,需要从log读取一下metadata
      // reset log end offset for remote replicas
// 理解这,关键知道leo什么时候被更新的,leo只有当follower成功fetch leader的数据时,才会更新leader.assignedReplicas.getReplica.leo
// 所以这里需要把leo给reset,因为如果有数据,可能是上次该broker称为leader时的遗留数据 assignedReplicas.foreach(r => if (r.brokerId != localBrokerId) r.logEndOffset = LogOffsetMetadata.UnknownOffsetMetadata) // 上面把所有remote replica的leo重置了成UnknownOffsetMetadata(-1),那么在maybeIncrementLeaderHW中会取所有replica中最小的leo,如果除leader外有其他replica,因为刚被重置过,最小leo一定是-1
// -1一定小于当前的hw,所以hw其实不会被increment。只有当isr中只有leader时,那hw会被increment到leader.leo

maybeIncrementLeaderHW(newLeaderReplica) if (topic == OffsetManager.OffsetsTopicName) offsetManager.loadOffsetsFromLog(partitionId) true } }
复制代码

这里还有个函数getOrCreateReplica,知道两点,
a. 在这里当local replica不存在的时候,会真正的创建replica
b. 所有生成replica都是用这个函数,所以其他的replica list都是assignedReplicaMap中replica的引用,比如inSyncReplicas

复制代码
def getOrCreateReplica(replicaId: Int = localBrokerId): Replica = {
    val replicaOpt = getReplica(replicaId)//assignedReplicaMap.get(replicaId)
    replicaOpt match {
      case Some(replica) => replica
      case None =>
        if (isReplicaLocal(replicaId)) { //如果是local,并且在AR中没有,那么需要创建这个replica
          val config = LogConfig.fromProps(logManager.defaultConfig.toProps, AdminUtils.fetchTopicConfig(zkClient, topic))
          val log = logManager.createLog(TopicAndPartition(topic, partitionId), config) //真正的创建replica文件
          val checkpoint = replicaManager.highWatermarkCheckpoints(log.dir.getParentFile.getAbsolutePath) //需要读出hw checkpoint
          val offsetMap = checkpoint.read
          if (!offsetMap.contains(TopicAndPartition(topic, partitionId)))
            warn("No checkpointed highwatermark is found for partition [%s,%d]".format(topic, partitionId))
          val offset = offsetMap.getOrElse(TopicAndPartition(topic, partitionId), 0L).min(log.logEndOffset) //读出hw,和loe求min,防止hw大于loe
          val localReplica = new Replica(replicaId, this, time, offset, Some(log))
          addReplicaIfNotExists(localReplica)
        } else { //
          val remoteReplica = new Replica(replicaId, this, time)
          addReplicaIfNotExists(remoteReplica)
        }
        getReplica(replicaId).get
    }
  }
复制代码

 

replicaManager.makeFollowers

复制代码
var partitionsToMakeFollower: Set[Partition] = Set() //记录leader发生变化的partition
//调用partition.makeFollower
if (partition.makeFollower(controllerId, partitionStateInfo, correlationId, offsetManager)) // 仅仅当partition的leader发生变化时才返回true,因为如果不变,不需要做任何操作
    partitionsToMakeFollower += partition
//由于leader已发生变化,需要把旧的fetcher删除
replicaFetcherManager.removeFetcherForPartitions(partitionsToMakeFollower.map(new TopicAndPartition(_)))

//由于leader已发生变化,所以之前和旧leader同步的数据可能和新的leader是不一致的,但hw以下的数据,大家都是一致的,所以就把hw以上的数据truncate掉,防止不一致
logManager.truncateTo(partitionsToMakeFollower.map(partition => (new TopicAndPartition(partition), partition.getOrCreateReplica().highWatermark.messageOffset)).toMap)

if (isShuttingDown.get()) {
    //真正shuttingDown,就不要再加fetcher
}
else {
    // we do not need to check if the leader exists again since this has been done at the beginning of this process
    val partitionsToMakeFollowerWithLeaderAndOffset = partitionsToMakeFollower.map(partition => //
      new TopicAndPartition(partition) -> BrokerAndInitialOffset(
        leaders.find(_.id == partition.leaderReplicaIdOpt.get).get,
        partition.getReplica().get.logEndOffset.messageOffset)).toMap

    replicaFetcherManager.addFetcherForPartitions(partitionsToMakeFollowerWithLeaderAndOffset) //增加新的fetcher
}

复制代码

 

partition.makeFollower
比较简单,只是更新assignedReplicas和ISR

复制代码
def makeFollower(controllerId: Int,
                   partitionStateInfo: PartitionStateInfo,
                   correlationId: Int, offsetManager: OffsetManager): Boolean = {
    inWriteLock(leaderIsrUpdateLock) {
      val allReplicas = partitionStateInfo.allReplicas
      val leaderIsrAndControllerEpoch = partitionStateInfo.leaderIsrAndControllerEpoch
      val leaderAndIsr = leaderIsrAndControllerEpoch.leaderAndIsr
      val newLeaderBrokerId: Int = leaderAndIsr.leader
      // record the epoch of the controller that made the leadership decision. This is useful while updating the isr
      // to maintain the decision maker controller's epoch in the zookeeper path
      controllerEpoch = leaderIsrAndControllerEpoch.controllerEpoch
      // add replicas that are new
      allReplicas.foreach(r => getOrCreateReplica(r))
      // remove assigned replicas that have been removed by the controller
      (assignedReplicas().map(_.brokerId) -- allReplicas).foreach(removeReplica(_))
      inSyncReplicas = Set.empty[Replica] // 将isr置空,不同于makeLeader
      leaderEpoch = leaderAndIsr.leaderEpoch
      zkVersion = leaderAndIsr.zkVersion

      if (leaderReplicaIdOpt.isDefined && leaderReplicaIdOpt.get == newLeaderBrokerId) { // 判断replica leader是否发生了变化
        false
      }
      else {
        leaderReplicaIdOpt = Some(newLeaderBrokerId) // 如果发生变化,则更新leader
        true
      }
    }
  }

本文章摘自博客园,原文发布日期:2015-10-27 
目录
相关文章
|
13天前
|
消息中间件 Java Kafka
什么是Apache Kafka?如何将其与Spring Boot集成?
什么是Apache Kafka?如何将其与Spring Boot集成?
44 5
|
15天前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
23 1
|
1月前
|
消息中间件 Ubuntu Java
Ubuntu系统上安装Apache Kafka
Ubuntu系统上安装Apache Kafka
|
1月前
|
消息中间件 监控 Kafka
Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面
随着大数据技术的发展,Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面,方便管理和监控 Kafka 集群。本文详细介绍了 Kafka Manager 的部署步骤和基本使用方法,包括配置文件的修改、启动命令、API 示例代码等,帮助你快速上手并有效管理 Kafka 集群。
44 0
|
4月前
|
存储 消息中间件 Java
Apache Flink 实践问题之原生TM UI日志问题如何解决
Apache Flink 实践问题之原生TM UI日志问题如何解决
48 1
|
2月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
765 13
Apache Flink 2.0-preview released
|
2月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
82 3
|
3月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
4月前
|
消息中间件 监控 数据挖掘
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
271 2
|
4月前
|
消息中间件 分布式计算 Hadoop
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
60 3

推荐镜像

更多