styleGAN环境搭建 、 动漫模型效果测评

简介: styleGAN环境搭建 、 动漫模型效果测评
🎉 声明: 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️

风格迁移 系列创作如下

styleGAN环境搭建 | 动漫模型效果测试流程简记如下:

环境搭建:

  • 服务器:ubuntu1~18.04 Quadro RTX 5000 16G (做测试11G的卡可以胜任)
  • CUDA版本 V10.0.130
conda create -n tf15 python=3.6.6

conda activate tf15

pip install tensorflow-gpu==1.15 (1.15 测试时会有一些 WARNING,不影响测试)
或者 
pip install tensorflow-gpu==1.13

pip install pillow

pip install requests

动漫模型效果测试开启:

所使用代码: GitHub styleGAN 官方实现

styleGAN论文: A Style-Based Generator Architecture for Generative Adversarial Networks

项目目录结构如下:

0

模型下载(百度网盘):

已训练好的动漫头像模型(动漫头像为主,512x512)
# 该模型来自 https://blog.csdn.net/weixin_41943311/article/details/100539707 这位博主的发布

链接:https://pan.baidu.com/s/1_N2y1F4BpwsufNK6xOqaig 
提取码:2022

新建 pretrained_example-dongman.py 内容如下:

# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
 
"""Minimal script for generating an image using pre-trained StyleGAN generator."""
 
import os
import pickle
import numpy as np
import PIL.Image
import dnnlib
import dnnlib.tflib as tflib
import config
import glob
import random

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "3"

PREFIX = 'Anime'
#PREFIX = 'Animation'
 
TIMES_LOOP = 100
 
def main():
    # Initialize TensorFlow.
    tflib.init_tf()
 
    # Load pre-trained network.

    Model = 'cache/2019-03-08-stylegan-animefaces-network-02051-021980.pkl'
    
    model_file = glob.glob(Model)
    if len(model_file) == 1:
        model_file = open(model_file[0], "rb")
    else:
        raise Exception('Failed to find the model')
 
    _G, _D, Gs = pickle.load(model_file)
    # _G = Instantaneous snapshot of the generator. Mainly useful for resuming a previous training run.
    # _D = Instantaneous snapshot of the discriminator. Mainly useful for resuming a previous training run.
    # Gs = Long-term average of the generator. Yields higher-quality results than the instantaneous snapshot.
 
    # Print network details.
    Gs.print_layers()
 
    for i in range(TIMES_LOOP):
        # Pick latent vector.
        SEED = random.randint(0, 18000)
        rnd = np.random.RandomState(SEED)
        latents = rnd.randn(1, Gs.input_shape[1])
 
         # Generate image.
        fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
        images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
 
         # Generate and Save image.
        os.makedirs(config.result_dir, exist_ok=True)
        save_name = PREFIX + '_' + str(random.getrandbits(64)) + '.png'
        save_path = os.path.join(config.result_dir, save_name)
        PIL.Image.fromarray(images[0], 'RGB').save(save_path)
 
if __name__ == "__main__":
    main()

测试运行命令如下:

python pretrained_example-dongman.py 

注意事项:

一定要设置使用的卡,不然它默认会使用所有卡,把其他卡的程序干掉了(难受):
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"

单卡 GPU占用
8271MiB

生成的动漫女生头像如下:
1

📙 博主 AI 领域八大干货专栏、诚不我欺


📙 预祝各位 2022 前途似锦、可摘星辰

🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
❤️ 如果文章对你有帮助、 点赞、评论鼓励博主的每一分认真创作
❤️ 比寻找温暖更重要的是,让自己成为一盏灯火 ❤️

9.png

目录
相关文章
|
3月前
|
数据采集 人工智能 物联网
【Qwen模型百变玩家】——从微调到部署的全能攻略!
本文通过“Qwen模型”实例,详细讲解了AI模型从微调到部署的全过程。涵盖模型简介、调参技巧、高效部署及实际案例,帮助读者从新手成长为调参高手,确保模型在生产环境中稳定高效运行。
407 12
|
机器学习/深度学习 人工智能 JavaScript
Modelscope 中文竞技场的测评
Modelscope 是一种用于观察和分析模型的工具,它提供了一个直观的界面,使用户能够轻松地浏览和分析模型,而无需深入了解复杂的数学和编程。 以下简单和大家探讨一下Modelscope 中文竞技场的测试分享,将从写作创作相关、代码相关、人类价值观三个方面对进行综合测评,带大家多方面了解这一平台的综合实力。
541 2
|
9月前
|
自然语言处理 前端开发 Swift
社区供稿 | 中文llama3模型哪家强?llama3汉化版微调模型大比拼
随着llama3的发布,业界越来越多的针对其中文能力的微调版本也不断涌现出来,我们在ModelScope魔搭社区上,搜集到几款比较受欢迎的llama3中文版本模型,来从多个维度评测一下,其对齐后的中文能力到底如何? 微调后是否产生了灾难性遗忘问题。
|
数据采集 人工智能
对ModelScope 中的中文竞技场进行分析测评
ModelScope 是一款功能强大的人工智能模型,它在多个领域都有着广泛的应用
|
自然语言处理
「ModelScope」中文竞技场体验测评报告
体验大语言模型,并产出创作、代码相关、知识常识三个领域的评测报告
134 1
|
自然语言处理 程序员 数据库
用Modelscope 中文竞技场的测评体验分享
用Modelscope 中文竞技场的测评体验分享体验了三个场景,分别体验1系统默认的问题提交体验; 2.根据任务问题体验; 3.自主式提问题体验。就系统给出的答案进行评测。
2115 300
|
机器学习/深度学习 PyTorch 算法框架/工具
关于Modelscope 中文竞技场测评
Modelscope 是一款用于模型性能测评的开源工具,它提供了一套简便而强大的功能,帮助用户评估和比较不同机器学习模型的性能
388 22
关于Modelscope 中文竞技场测评
|
人工智能 并行计算 PyTorch
YOLOv5项目搭建(AI识别皮卡丘)
在网上看了很多关于yolov5的博客,很多都是解读参数配置,或者是解析它的底层原理什么的,对新手不是特别友好,我认为学一样东西,先不管其他的,先把这个东西做出来,然后再去学习内部的原理,这样学习起来就不会那么枯燥乏味了,本篇博客就是纯手把手教你yolov5的搭建、训练、识别。
286 1
|
机器学习/深度学习 人工智能 自然语言处理
关于Modelscope 中文竞技场的测评体验分享
众所周知,Modelscope 中文竞技场是一款备受关注和期待的智能辅助工具,帮助用户评估和比较不同机器学习模型的性能,它为中文自然语言处理任务提供了一个全新的评测平台。在当今人工智能快速发展的时代背景下,Modelscope 中文竞技场作为一个集写作相关、代码相关和人类价值观于一体的平台,吸引了众多用户的关注。那么接下来就来分享一下Modelscope 中文竞技场的测试分享,将从写作相关、代码相关和人类价值观三个方面对 Modelscope 进行综合测评,带您深入了解这一平台的优势、特点与潜力。
788 1
关于Modelscope 中文竞技场的测评体验分享
|
机器学习/深度学习 自然语言处理 开发者
关于Modelscope 中文竞技场的测评分享
众所周知,Modelscope 中文竞技场是一款备受关注和期待的智能辅助工具,帮助用户评估和比较不同机器学习模型的性能,它为中文自然语言处理任务提供了一个全新的评测平台。那么接下来就来分享一下Modelscope 中文竞技场的测试分享。
383 1
关于Modelscope 中文竞技场的测评分享