10亿参数,10亿张图!Facebook新AI模型SEER实现自监督学习,LeCun大赞最有前途

简介: 刚刚,Facebook公布了一个在10亿张图片上训练的AI模型SEER。该模型包含10亿个参数,可以从网上任何未标记图像的中学习,并在一系列计算机视觉基准上取得了先进的结果。Facebook的这一突破能否实现计算机视觉的自监督学习革命?

微信图片_20220112165434.jpg


无需标签,自我分析数据!


Facebook的新AI模型在革计算机视觉的命?

 

刚刚,Facebook宣布了一个在10亿张图片上训练的AI模型——SEER,是自监督(Self-supervised)的缩写。


微信图片_20220112165436.png

 

该模型包含10亿个参数,可以在几乎没有标签帮助的情况下识别图像中的物体,并在一系列计算机视觉基准上取得了先进的结果。

 

要知道,大多数计算机视觉模型都是从标记的数据集中学习。

 

而Facebook的最新模型则是通过暴露数据各部分之间的关系从数据中来生成标签。

 

这一步被认为对有朝一日实现人类终极智能至关重要。

 


新AI模型SEER在革计算机视觉的命?


参数一直是机器学习系统的基本组成部分,是从历史训练数据中得到的模型的一部分。

 

人工智能的未来在于是否能够不依赖于带注释的数据集,从给定的任何信息中进行推理

 

只要提供文本、图像或其他类型的数据,AI就能够完美地识别照片中的物体、解释文本,或者执行任何要求它执行的其他任务。


微信图片_20220112165442.jpg


Facebook首席科学家Yann LeCun表示,这是构建具有背景知识或「常识」的机器以解决远远超出当今AI任务的最有前途的方法之一。

 

我们已经看到了自然语言处理(NLP)的重大进步。其中,在大量文本上对超大型模型进行自我监督的预训练在自然语言处理方面取得重大突破


微信图片_20220112165444.png

 

现在,Facebook声称自家的SEER计算机视觉模型向这个目标迈进了一步。

 

它可以从互联网上的任何一组随机图像中学习,而不需要进行注释。

 

对视觉的自我监督是一项具有挑战性的任务。

 

对于文本,语义概念可以被分解成离散的单词,但是对于图像,模型必须自己推断哪个像素属于哪个概念

 

同样的概念在不同的图像之间往往会发生变化,这使得问题变得更具挑战性。因此,要想掌握单个概念的变化,就需要查看大量不同的图像。

 

微信图片_20220112165446.png


研究人员通过Instagram的公开的10亿张图片进行模型训练

 

他们发现,让人工智能系统处理复杂的图像数据至少需要两个核心算法

 

一是可以从大量随机图像中学习,无需任何元数据或注释的算法;二是卷积神经网络(ConvNet)足够大,可以从这些数据中捕捉和学习所有视觉概念。

 

卷积神经网络在20世纪80年代首次提出,受到生物学过程的启发,因为模型中各组成部分之间的连接模式类似于视觉皮层。


SEER:10亿张图,无需标记,自主训练数据集


SEER模型结合了最近的架构家族「RegNet」和在线自我监督训练「SwAV」来规模训练数具有10亿参数的数十亿张随机图像。

 

科研团队改编利用了一种新算法,称为SwAV。它起源于FAIR的研究,后被应用于自我监督学习。

 

微信图片_20220112165447.png

 

SwAV 使用在线聚类方法来快速分组具有相似视觉概念的图像,并且能利用图像的相似性改进自我监督学习的先进水平,而且训练时间减少了6倍

 

这种规模的训练模型还需要一个在运行时间和内存方面都效率很高的,又不会损失精确性的模型架构。

 

微信图片_20220112165449.gif

 

幸运的是,FAIR 最近在架构设计领域的一项创新催生了一个称为 RegNets 的新模型家族,它完全符合这些需求。

 

RegNet 模型能够扩展到数十亿甚至数万亿个参数,可以优化这些参数以适应不同的运行时间和内存限制。

 

微信图片_20220112165451.png

 

科研团队对比了SEER在随机IG图像上的预训练和在ImageNET上的预训练,果表明非监督特性比监督特性平均提高了2%

 

为SEER技术添上最后一块砖的是VISSL自我监督学习通用库。

 

服务于SEER的VISSL是开源的,这个通用图书馆能让更广泛的群体可以从图像中进行自我监督学习实验。

 

VISSL是一个基于PyTorch的库,她允许使用各种现代方法在小规模和大规模上进行自我监督训练。

 

微信图片_20220112165453.png

 

VISSL还包含了一个一个广泛的基准套件和一个包括了60多个预先训练模型的模型动物园(model zoo),使研究人员可以比较几个现代自我监督方法。

 

VISSL通过整合现有的几种算法,减少了对每个GPU的内存需要,提高了任意一个给定模型的训练速度,从而实现了大规模的自我监督学习。

 

SEER的自我监督模型建立在与VISSL相同的核心工具之上,并结合了PyTorch的自定义数据加载器,该加载器的数据吞吐量高于默认值。


自监督学习的未来

  

Facebook 表示,SEER在预先训练了10亿张公开的Instagram图片后,性能优于最先进的自监督模型。

 

SEER在目标检测分析、分割和图像分类等任务上也取得了最佳结果。

 

微信图片_20220112165455.png

 

用受欢迎的ImageNet10%的数据集中进行训练时,SEER仍然达到了77.9%的准确率。

 

当只有1%的数据集训练时,SEER的准确率是60.5%

 

接下来,Facebook将发布SEER背后的一些技术,但不会发布算法本身,因为它使用了Instagram用户的数据进行训练。

 

微信图片_20220112165457.jpg

 

麻省理工学院计算知觉和认知实验室的负责人Aude Oliva表示,这种方法将使我们能够实践更多雄心勃勃的视觉识别任务,但是像SEER这样的尖端人工智能算法的庞大规模和复杂性也带来了问题。

 

SEER可能有数十亿或数万亿个神经连接或参数,这样的算法需要大量的计算能力,使可用的芯片供应变得更加紧张

 

Facebook的团队使用了具有32GB RAM的 V100 Nvidia GPU,并且随着模型尺寸的增加,必须将模型放入可用的RAM中。

 

微信图片_20220112165458.jpg

 

长期以来,自我监督学习一直是 Facebook 人工智能的一个重点,因为它使机器能够直接从世界上大量可用的信息中学习,而不仅仅是从专门为人工智能研究创建的训练数据中学习。

 

自我监督学习对计算机视觉的未来有着难以置信的影响,就像它在其他研究领域所做的那样。

 

消除对人工注释和元数据的需求,使计算机视觉社区能够处理更大、更多样化的数据集。

 

Facebook的研究人员表示,「这一突破可以实现计算机视觉的自监督学习革命。

 

微信图片_20220112165500.png


参考资料:

https://ai.facebook.com/blog/seer-the-start-of-a-more-powerful-flexible-and-accessible-era-for-computer-vision/

https://venturebeat.com/2021/03/04/facebooks-new-computer-vision-model-achieves-state-of-the-art-performance-by-learning-from-random-images/

相关文章
|
24天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
70 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
102 2
|
16天前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
35 4
|
25天前
|
人工智能 自然语言处理
从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!
【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。
62 6
|
1月前
|
人工智能 自然语言处理 安全
【通义】AI视界|Adobe推出文生视频AI模型,迎战OpenAI和Meta
本文精选了过去24小时内的重要科技新闻,包括微软人工智能副总裁跳槽至OpenAI、Adobe推出文本生成视频的AI模型、Meta取消高端头显转而开发超轻量设备、谷歌与核能公司合作为数据中心供电,以及英伟达股价创下新高,市值接近3.4万亿美元。这些动态展示了科技行业的快速发展和激烈竞争。点击链接或扫描二维码获取更多资讯。
|
30天前
|
机器学习/深度学习 人工智能 TensorFlow
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
49 4
|
30天前
|
机器学习/深度学习 人工智能 自然语言处理
揭开模型微调Fine-Tuning的神秘面纱:如何在预训练基础上巧妙调整,解锁定制AI解决方案的秘密武器
【10月更文挑战第8天】模型微调是在预训练模型基础上,利用特定领域数据进一步训练,以优化模型在特定任务上的表现。此方法广泛应用于自然语言处理和计算机视觉等领域,通过调整预训练模型的部分或全部参数,结合适当的正则化手段,有效提升模型性能。例如,使用Hugging Face的Transformers库对BERT模型进行微调,以改善文本匹配任务的准确率。
53 1
|
机器学习/深度学习 算法 决策智能
【重磅开源】Facebook开源 Nevergrad:一种用于无梯度优化的开源工具
【重磅开源】Facebook开源 Nevergrad:一种用于无梯度优化的开源工具
198 0
|
缓存 数据可视化 测试技术
开源多年后,Facebook这个调试工具,再登Github热门榜
让许多工程师合作开发大型应用大多会面临一个挑战,通常没有一个人知道每个模块是如何工作的,这种技能会让开发新功能、调查Bug或优化性能变得困难,为了解决这个问题,Facebook创建并开源了Flipper,一个可扩展的跨平台的调试工具,用来调试 iOS 和 Android 应用。近日又双叒登上了Github热榜。
|
前端开发 JavaScript 测试技术
Facebook 开源可扩展文本编辑器 Lexical
Meta(原 Facebook)近日开源可扩展文本编辑器 Lexical,源代码托管在 GitHub 上采用 MIT 许可证。
546 0
Facebook 开源可扩展文本编辑器 Lexical