DeepMind最新发现!神经网络的性能竟然优于神经符号模型

简介: Neural-Symbolic,本质上其实是将现代数学中的分析学和代数学结合的产物在正确的测试条件下,神经网络的性能会优于神经符号模型。
【新智元导读】DeepMind最新的研究结果再一次打破了传统认知——根据研究人员的最新发现,神经网络对数据的要求,居然比神经符号模型还要低!不仅如此,实验结果证实,神经网络的在关键任务上的效果还要更好。不需要预先训练,完全无监督,居然这么神奇?


按照之前的常识,结合了算法和符号推理技术的神经符号模型(Neurosymbolic Models),会比神经网络更适合于预测和解释任务,此外,神经符号模型在反事实方面表现更好。

 

Neural-Symbolic,本质上其实是将现代数学中的分析学和代数学结合的产物

 

分析学擅长处理数值、函数、逼近等问题, 代数学擅长处理推演、抽象、结构等问题,如果能适当将两者结合,会有很可观的效果。

9.jpg

然而,近日,DeepMind的研究人员声称,在正确的测试条件下,神经网络的性能会优于神经符号模型。

与之前的研究结论相反,研究人员认为,对于可以衡量高级认知功能并基于视觉的任务来说,基于分布式表示的神经网络模型确实表现良好,并已经明显胜过了现有的神经符号模型。

10.jpg

在论文中,作者描述了一种关于视频的时空推理的体系结构,此结构可以学习到视频中的所有成分,并且所有中间的表示都贯穿分布在整个神经网络层中。

 

论文地址:https://arxiv.org/pdf/2012.08508.pdf

 

该团队表示,该体系结构在一个流行的数据集上的所有任务的表现,都超过了神经符号模型,并在反事实问题上优势最明显

11.jpg

这一研究成果,可能会非常有助于设计和开发具有推断作用的机器。

 

该文章提出的神经网络架构,主要利用注意力机制,来实现对集成信息的高效提取

12.jpg

有人可能要问了,什么是注意力机制呢?

 

注意力(attention)其实是一个非常常见,但是又会被忽略的事实。比如天空一只鸟飞过去的时候,往往你的注意力会追随着鸟儿,天空在你的视觉系统中,自然成为了一个背景(background)信息。

 

计算机视觉中的注意力机制(attention)的基本思想,就是想让系统学会注意力——能够忽略无关信息而关注重点信息

 

总的来说,注意力机制就是一种一次只专注于一个元素或几个元素的算法机制

 

对于DeepMind这一研究来说,整个训练过程都是自我监督的,这意味着该模型必须使用底层的动态机制,来推断视频中被掩盖的对象,以便提取更多信息。

 

而且该架构可以确保视频中的视觉元素与物理对象相对应,论文作者认为,这一步骤对于更高层次的推理至关重要。

 

在实验部分,研究人员将他们的神经网络与视频表示和推理的CoLlision事件(也就是CLEVRER数据集)进行了基准比较

 

其中,CLEVRER数据集包含由机器生成的20,000多个5秒钟的物体碰撞视频(这几种物体是三种形状,拥有八种颜色的两种材料),以及300,000多个问题和答案。

13.jpg

这些问答都聚焦于逻辑推理的四个要素:描述性(例如,“什么颜色” ),说明性(“造成的原因”),预测性(“接下来会发生什么”)和反事实(“如果某种情况出现,会发生什么”)。

14.jpg

在这里小编附上CLEVRER资源链接:

 

论文链接:https://arxiv.org/abs/1910.01442

项目链接:http://clevrer.csail.mit.edu/

 

实验结果表明,在没有预先训练,没有标记数据,且训练数据少40%的情况下,他们的神经网络和最佳神经符号模型性能相当,这无疑挑战了神经网络比神经符号模型更需要数据这一观点。


15.jpg此外,它在最困难的反事实问题上的得分为59.8%(这一得分比机会模型和所有其他模型都好)。

 

同时,此模型还可以可以推广到其他任务,包括CATER(旨在预测目标对象在视频最后一帧中的位置的对象跟踪视频数据集)。


15.jpg

研究人员在论文中写道:“我们的研究结果证明了在得益于分布式表示的灵活性和表现力的同时,深层网络可以复制人类认知和推理的许多特性。”

 

“神经模型在数学上也取得了一些成功,从直觉上讲,该领域需要执行严格的规则,需要操纵各种各样的复杂符号。但是,令人惊讶的是,大型神经语言模型其实并不需要需进行目标任务的明确训练,也可获得算术推理和类推的能力

 

这表明,在扩展到更多数据,并使用更大,更高效的体系结构时,当前的神经网络局限性得到了改善。”

相关文章
|
7月前
|
C++
基于Reactor模型的高性能网络库之地址篇
这段代码定义了一个 InetAddress 类,是 C++ 网络编程中用于封装 IPv4 地址和端口的常见做法。该类的主要作用是方便地表示和操作一个网络地址(IP + 端口)
348 58
|
7月前
|
网络协议 算法 Java
基于Reactor模型的高性能网络库之Tcpserver组件-上层调度器
TcpServer 是一个用于管理 TCP 连接的类,包含成员变量如事件循环(EventLoop)、连接池(ConnectionMap)和回调函数等。其主要功能包括监听新连接、设置线程池、启动服务器及处理连接事件。通过 Acceptor 接收新连接,并使用轮询算法将连接分配给子事件循环(subloop)进行读写操作。调用链从 start() 开始,经由线程池启动和 Acceptor 监听,最终由 TcpConnection 管理具体连接的事件处理。
259 2
|
7月前
基于Reactor模型的高性能网络库之Tcpconnection组件
TcpConnection 由 subLoop 管理 connfd,负责处理具体连接。它封装了连接套接字,通过 Channel 监听可读、可写、关闭、错误等
208 1
|
7月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
5月前
|
人工智能 运维 安全
从被动防御到主动免疫进化!迈格网络 “天机” AI 安全防护平台,助推全端防护性能提升
迈格网络推出“天机”新版本,以AI自学习、全端防护、主动安全三大核心能力,重构网络安全防线。融合AI引擎与DeepSeek-R1模型,实现威胁预测、零日防御、自动化响应,覆盖Web、APP、小程序全场景,助力企业从被动防御迈向主动免疫,护航数字化转型。
从被动防御到主动免疫进化!迈格网络 “天机” AI 安全防护平台,助推全端防护性能提升
|
4月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
276 4
|
4月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
5月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
385 2
|
5月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
141 8
|
7月前
基于Reactor模型的高性能网络库之Poller(EpollPoller)组件
封装底层 I/O 多路复用机制(如 epoll)的抽象类 Poller,提供统一接口支持多种实现。Poller 是一个抽象基类,定义了 Channel 管理、事件收集等核心功能,并与 EventLoop 绑定。其子类 EPollPoller 实现了基于 epoll 的具体操作,包括事件等待、Channel 更新和删除等。通过工厂方法可创建默认的 Poller 实例,实现多态调用。
376 60

热门文章

最新文章