使用flink SQL Client将mysql数据写入到hudi并同步到hive

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
实时计算 Flink 版,5000CU*H 3个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 本文介绍如何使用flink SQL Client将mysql数据写入到hudi并同步到hive

测试环境

组件版本

  • mysql 5.7
  • hive 3.1.2
  • flink 1.12.2
  • hudi 0.9.0
  • hadoop 3.2.0

首先请确保以下组件正常启动:

  • mysql
  • hivemetastore
  • hiveserver2
  • hdfs
  • yarn

hudi适配hive 3.1.2源码编译

0.9.0版本的hudi在适配hive3时,其hudi/package/hudi-flink-bundle/pom.xml文件使用的flink-connector-hive版本有问题,所以需要修改pom文件。

修改点一:

143行,修改为:

<include>org.apache.flink:flink-sql-connector-hive-${hive.version}_${scala.binary.version}</include>

642行,修改为:

<artifactId>flink-sql-connector-hive-${hive.version}_${scala.binary.version}</artifactId>

编译命令:

mvn clean install -DskipTests -Pflink-bundle-shade-hive3 -Dhadoop.version=3.2.0 -Dhive.version=3.1.2 -Pinclude-flink-sql-connector-hive -U -Dscala.version=2.12.10 -Dscala.binary.version=2.12

将编译后得到的hudi/package/hudi-flink-bundle/target/hudi-flink-bundle_2.12-0.9.0.jar拷贝到flink/lib目录下,将得到的hudi/package/hudi-hadoop-mr-bundle/target/hudi-hadoop-mr-bundle-0.9.0.jar拷贝到hive/auxlib目录下,如果没有这个目录则新建一个即可。

关于flink操作hudi的相关方法如果有疑惑的可先看本系列的其他文章,例如使用flink插入数据到hudi数据湖初探Flink SQL Client实战CDC数据入湖等。

生成测试数据

使用datafaker生成100000条数据,放到mysql数据库中的stu4表。

datafaker工具使用方法见datafaker --- 测试数据生成工具

首先在mysql中新建表test.stu4

create database test;
use test;
create table stu4 (
  id int unsigned auto_increment primary key COMMENT '自增id',
  name varchar(20) not null comment '学生名字',
  school varchar(20) not null comment '学校名字',
  nickname varchar(20) not null comment '学生小名',
  age int not null comment '学生年龄',
  score decimal(4,2) not null comment '成绩',
  class_num int not null comment '班级人数',
  phone bigint not null comment '电话号码',
  email varchar(64) comment '家庭网络邮箱',
  ip varchar(32) comment 'IP地址'
  ) engine=InnoDB default charset=utf8;

新建meta.txt文件,文件内容为:

id||int||自增id[:inc(id,1)]
name||varchar(20)||学生名字
school||varchar(20)||学校名字[:enum(qinghua,beida,shanghaijiaoda,fudan,xidian,zhongda)]
nickname||varchar(20)||学生小名[:enum(tom,tony,mick,rich,jasper)]
age||int||学生年龄[:age]
score||decimal(4,2)||成绩[:decimal(4,2,1)]
class_num||int||班级人数[:int(10, 100)]
phone||bigint||电话号码[:phone_number]
email||varchar(64)||家庭网络邮箱[:email]
ip||varchar(32)||IP地址[:ipv4]

生成10000条数据并写入到mysql中的test.stu4表

datafaker rdb mysql+mysqldb://root:Pass-123-root@hadoop:3306/test?charset=utf8 stu4 100000 --meta meta.txt 

datafaker工具有详细使用方法,请参考。

导入mysql数据

使用flink sql client进行如下操作

构建源表

create table stu4(
  id bigint not null,
  name string,
  school string,
  nickname string,
  age int not null,
  score decimal(4,2) not null,
  class_num int not null,
  phone bigint not null,
  email string,
  ip string,
  PRIMARY KEY (id) NOT ENFORCED
) with (
  'connector' = 'jdbc',
  'url' = 'jdbc:mysql://hadoop:3306/test?serverTimezone=GMT%2B8',
  'username' = 'root',
  'password' = 'Pass-123-root',
  'table-name' = 'stu4'
);

构建目标表

 create table stu4_tmp_1(
  id bigint not null,
  name string,
  `school` string,
  nickname string,
  age int not null,
 score decimal(4,2) not null,
  class_num int not null,
  phone bigint not null,
  email string,
  ip string,
  primary key (id) not enforced
)
 partitioned by (`school`)
 with (
  'connector' = 'hudi',
  'path' = 'hdfs://hadoop:9000/tmp/stu4_tmp_1',
  'table.type' = 'COPY_ON_WRITE',
  'write.precombine.field' = 'school',
  'hive_sync.enable' = 'true',
  'hive_sync.mode' = 'hms',
  'hive_sync.metastore.uris' = 'thrift://hadoop:9083',
  'hive_sync.jdbc_url' = 'jdbc:hive2://hadoop:10000',
  'hive_sync.table' = 'stu4_tmp_1',
  'hive_sync.db' = 'test',
  'hive_sync.username' = 'hive',
  'hive_sync.password' = 'hive'
  );

插入数据

insert into stu4_tmp_1 select * from stu4;

hive数据查询

使用hive命令进入hive cli

执行如下命令查询数据

select * from test.stu4_tmp_1 limit 10;

结果:

了解更多

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
4月前
|
SQL 存储 API
Flink实践:通过Flink SQL进行SFTP文件的读写操作
虽然 Apache Flink 与 SFTP 之间的直接交互存在一定的限制,但通过一些创造性的方法和技术,我们仍然可以有效地实现对 SFTP 文件的读写操作。这既展现了 Flink 在处理复杂数据场景中的强大能力,也体现了软件工程中常见的问题解决思路——即通过现有工具和一定的间接方法来克服技术障碍。通过这种方式,Flink SQL 成为了处理各种数据源,包括 SFTP 文件,在内的强大工具。
225 15
|
3月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
290 0
|
29天前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
93 16
|
1月前
|
SQL 存储 缓存
Flink SQL Deduplication 去重以及如何获取最新状态操作
Flink SQL Deduplication 是一种高效的数据去重功能,支持多种数据类型和灵活的配置选项。它通过哈希表、时间窗口和状态管理等技术实现去重,适用于流处理和批处理场景。本文介绍了其特性、原理、实际案例及源码分析,帮助读者更好地理解和应用这一功能。
128 14
|
3月前
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
70 0
|
4月前
|
SQL 大数据 数据处理
奇迹降临!解锁 Flink SQL 简单高效的终极秘籍,开启数据处理的传奇之旅!
【9月更文挑战第7天】在大数据处理领域,Flink SQL 因其强大功能与简洁语法成为开发者首选。本文分享了编写高效 Flink SQL 的实用技巧:理解数据特征及业务需求;灵活运用窗口函数(如 TUMBLE 和 HOP);优化连接操作,优先采用等值连接;合理选择数据类型以减少计算资源消耗。结合实际案例(如实时电商数据分析),并通过定期性能测试与调优,助力开发者在大数据处理中更得心应手,挖掘更多价值信息。
61 1
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1545 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
5天前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
115 0
Flink CDC 在阿里云实时计算Flink版的云上实践
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
186 56