谷歌提出多语言BERT模型:可为109种语言生成与语言无关的跨语言句子嵌入

简介: 谷歌研究人员提出了一种LaBSE的多语言BERT嵌入模型。该模型可为109种语言生成与语言无关的跨语言句子嵌入,同时在跨语言文本检索性能优于LASER。

微信图片_20220109154752.jpg


近日,谷歌AI研究人员提出了一种称为LaBSE的多语言BERT嵌入模型,
该模型可为109种语言生成与语言无关的跨语言句子嵌入。


这一论文题目为「Language-agnostic BERT Sentence Embedding」,目前已在arxiv上发表。


      微信图片_20220109154754.png


论文地址:https://arxiv.org/pdf/2007.01852.pdf


研究背景


多语言嵌入模型是一种功能强大的工具,可将不同语言的文本编码到共享的嵌入空间中,从而使其能够应用在一系列下游任务,比如文本分类、文本聚类等,同时它还利用语义信息来理解语言。 


用于生成此类嵌入的现有方法如LASER或m~USE依赖并行数据,将句子从一种语言直接映射到另一种语言,鼓励句子嵌入之间的一致性。 尽管这些现有的多语言嵌入方法可在多种语言中有良好的整体性能,但与专用双语模型相比,它们在高资源语言上通常表现不佳。 


此外,由于有限的模型容量、低资源语言的训练数据质量通常较差,可能难以扩展多语言模型以支持更多语言,同时保持良好的性能。


微信图片_20220109154756.png


多语言嵌入空间的示例 


改善语言模型的最新研究包括开发掩码语言模型(MLM)预训练,如BERT,ALBER和RoBERTa使用的预训练。由于这种方法仅需要一种语言的文字,因此在多种语言和各种自然语言处理任务中均取得了非凡的成就。 


另外,MLM预训练已经扩展到多种语言,通过将MLM预训练修改为包括级联翻译对,也称作翻译语言模型(TLM),或者仅引入来自多种语言的预训练数据。 


但是,尽管在进行MLM和TLM训练时学习到的内部模型表示形式对下游任务进行微调很有帮助,但它们不能直接产生句子嵌入,而这对于翻译任务至关重要。 在这样情况下,研究人员提出了一种称为LaBSE的多语言BERT嵌入模型。 该模型使用MLM和TLM预训练在170亿个单语句子和60亿个双语句子对上进行了训练,即使在训练期间没有可用数据的低资源语言上也有效。 此外,该模型在多个并行文本检索任务上有表现出良好的性能。 


     微信图片_20220109154758.png


收集109种支持语言的训练数据


LaBSE模型可在单个模型中提供了对109种语言的扩展支持  在先前的工作中,研究者曾建议使用翻译排名任务来学习多语言句子嵌入空间。该方法通过给定源语言中的句子,对模型进行排序,从而对目标语言中的句子的正确翻译进行排名。 翻译排名任务通过使用带有共享变压器的双编码器体系结构进行训练的,让双语模型在多项并行文本检索任务表现出最先进的性能。 但是,由于模型能力、词汇量覆盖范围、训练数据质量等方面的限制,将双语模型扩展为支持多种语言(在研究者的测试案例中为16种语言)时,模型表现并不优。



微信图片_20220109154800.gif


翻译排名任务 


对于LaBSE,研究人员在类似BERT的体系结构上利用了语言模型预训练的最新成果,包括MLM和TLM,并在翻译排名任务上进行了微调。 使用MLM和TLM在109种语言上预先训练的500k令牌词汇表的12层转换器,用于增加模型和词汇表覆盖范围。 最终,LaBSE模型在单个模型中提供了对109种语言的扩展支持。


微信图片_20220109154802.png


双编码器体系结构


LaBSE模型在跨语言文本检索的性能优于LASER


研究者使用Tatoeba语料库评估提出的模型,Tatoeba语料库是一个数据集,包含多达112个语言的1000个英语对齐的句子对。 对于数据集中30种以上的语言,该模型没有训练数据。


该模型的任务是查找给定句子的最近相邻的翻译,并使用余弦距离进行计算。 为了了解训练数据分布的开头或结尾处的语言模型的性能,研究人员将语言集分为几组,并计算每组语言的平均准确性。 下表列出了与每种语言组的m〜USE、LASER以及LaBSE模型实现的平均准确性对比结果。


微信图片_20220109154804.png


可以看出,所有模型在涵盖大多数主要语言的14语言组中均表现出色。当涵盖的语言增多,LASER和LaBSE的平均准确度都会下降。 但是,随着语言数量的增加,LaBSE模型的准确性降低的要小得多,明显优于LASER,尤其是当包括112种语言的全部分发时,LaBSE准确性为83.7%,LASER为65.5%。 


此外,LaBSE还可用于从Web规模数据中挖掘并行文本。 谷歌研究人员已经通过tfhub向社区发布了预先训练的模型,其中包括可以按原样使用或可以使用特定于域的数据进行微调的模块。 链接:https://tfhub.dev/google/LaBSE/1 

 


参考链接:

https://ai.googleblog.com/


相关文章
|
6月前
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:五、模型架构简图 REV1
Bert Pytorch 源码分析:五、模型架构简图 REV1
89 0
|
6月前
|
PyTorch 算法框架/工具
Bert PyTorch 源码分析:一、嵌入层
Bert PyTorch 源码分析:一、嵌入层
77 0
|
6月前
|
PyTorch 算法框架/工具
Bert Pytorch 源码分析:五、模型架构简图
Bert Pytorch 源码分析:五、模型架构简图
65 0
|
1月前
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
64 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
【大语言模型-论文精读】谷歌-BERT:用于语言理解的预训练深度双向Transformers
【大语言模型-论文精读】谷歌-BERT:用于语言理解的预训练深度双向Transformers
42 1
|
1月前
|
机器学习/深度学习 自然语言处理 知识图谱
|
24天前
|
机器学习/深度学习 自然语言处理 算法
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
72 0
|
2月前
|
搜索推荐 算法
模型小,还高效!港大最新推荐系统EasyRec:零样本文本推荐能力超越OpenAI、Bert
【9月更文挑战第21天】香港大学研究者开发了一种名为EasyRec的新推荐系统,利用语言模型的强大文本理解和生成能力,解决了传统推荐算法在零样本学习场景中的局限。EasyRec通过文本-行为对齐框架,结合对比学习和协同语言模型调优,提升了推荐准确性。实验表明,EasyRec在多个真实世界数据集上的表现优于现有模型,但其性能依赖高质量文本数据且计算复杂度较高。论文详见:http://arxiv.org/abs/2408.08821
57 7
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
|
3月前
|
机器学习/深度学习 存储 自然语言处理
【NLP-新闻文本分类】3 Bert模型的对抗训练
详细介绍了使用BERT模型进行新闻文本分类的过程,包括数据集预处理、使用预处理数据训练BERT语料库、加载语料库和词典后用原始数据训练BERT模型,以及模型测试。
62 1

热门文章

最新文章