人工智能和机器学习技术推动企业发展

简介: IT主管们已经开始收获人工智能和机器学习技术所带来的回报。最近的一项调查显示,随着经济遭遇重创,有一半的主管正在考虑加大投资能够带来收益的人工智能和机器学习技术。

到目前为止,我们大多数人都知道,在当今时代,人工智能及其子领域机器学习技术与人类智能没什么关系。人工智能/机器学习技术主要涉及识别数据模式和自动执行一些独立的任务,包括可标记欺诈性金融交易的算法、回答客户问题的聊天机器人等。你猜怎么着?IT主管们很看重其巨大的潜力。


根据2月发布的针对IT主管的“首席信息官技术民意调查”(CIO Tech Poll),62%的受访者认为人工智能/机器学习是最具颠覆性的技术,42%的受访者认为这些技术具有最大的影响力——这两项数据使人工智能/机器学习技术的百分比是其最强竞争对手(大数据分析技术)的两倍。令人印象深刻的是,有18%的人已经在生产中使用了人工智能/机器学习解决方案。


7月份,在“首席信息官疫情业务影响调查(CIO Pandemic Business Impact Survey)”中提出了一个更具煽动性的问题:“您公司对考虑更多使用人工智能/机器学习技术以减少或降低人力资源成本的可能性有多大?”将近一半(48%)的受访者表示,这样做的可能性很大或有可能。这意味着,随着经济衰退的加剧,对人工智能/机器学习解决方案的需求可能会大大增加。


现在是时候来制定您的人工智能/机器学习技术策略了。为此,媒体记者和分析师剖析了这些问题,并提供了一些有意义的建议。



智能企业



尽管毫无疑问,人工智能/机器学习技术会取代某些工作,但是马修·芬尼根(Matthew Finnegan)在“计算机世界”平台上发表的文章,名为“工作中的人工智能:您的下一位同事可能是一个算法”,其着重讨论了人工智能系统与人类合作以提高工作效率的情况。最有趣的例子之一是“协作机器人”,它与工厂车间的工人一起工作,以提高员工的能力。


高效的人工智能/机器学习解决方案有多种形式,例如在“首席信息官”平台,克林特·博尔顿(Clint Boulton)在“5个机器学习成功案例:内部观察”一文中讲述了一系列新的案例研究。此文读起来就像是机器学习应用的精选合集:通过预测分析来预测医学治疗结果,通过密集数据分析实现个性化产品推荐,通过图像分析以提高作物产量。一个清晰的模式:当某个组织看到机器学习技术在某一领域取得成功后,类似的机器学习技术就会经常应用于其他领域。


撰稿人尼尔·温伯格(Neil Weinberg)在“人工智能如何创建自动化运营数据中心”一文中着重介绍了人工智能/机器学习技术的高度实用性直接使IT部门受益。根据温伯格的说法,人工智能/机器学习技术可以处理电源、设备和工作负载管理工作,并可在无需人工干预情况下持续进行优化(就硬件而言,可以预测故障)。数据中心的安全性也会受益于人工智能/机器学习功能,其既可以提醒管理员存在异常情况,也可以识别漏洞及其提供补救措施。


各种形式的机器学习技术通常从发现大量数据的模式开始。但在许多情况下,正如“首席安全官”平台的撰稿人玛利亚·科洛夫(Maria Korlov)在“您的人工智能和机器学习项目的安全性如何?”一文中所述,这些数据可能都是敏感的。科洛夫指出,数据安全性通常是事后才想到的,这使得某些机器学习系统本身就很容易发生数据泄露。其解决方案是从一开始就制定明确的安全策略,而在大型组织中,则要专门任命一名高管来管理与人工智能相关的风险。


那么您应该在哪里设计人工智能/机器学习解决方案呢?“信息世界”平台的特约编辑马丁·海勒(Martin Heller)认为,公共云提供商提供了极具吸引力的方案,但您需要仔细选择。在“如何选择云端机器学习平台”一文中,海勒概述了每个云端机器学习平台应具备的12种功能以及为什么需要这些功能。由于有如此多的数据分析工作负载转移到云端,因此利用机器学习技术来获取更大的价值,这是很合理的——但至关重要的是,您应该确保能够使用到最好的机器学习框架,并从预训练的模型中受益。


我们距离与人类智能相当的人工智能仍还差几代。同时,人工智能/机器学习技术将逐渐渗透到几乎所有类型的应用程序中,从而减少一些繁琐的工作,并提供前所未有的功能。难怪IT主管们认为,这些技术将产生最大的影响。

相关文章
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能技术的探讨
人工智能的概念,人工智能的发展,人工智能的各种学派,人工智能的应用领域
382 4
|
7月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
5月前
|
机器学习/深度学习 人工智能 监控
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
本系列文章深入讲解了从Seq2Seq、RNN到Transformer,再到GPT模型的关键技术原理与实现细节,帮助读者全面掌握Transformer及其在NLP中的应用。同时,通过一个房价预测的完整案例,介绍了算法工程师如何利用数据训练模型并解决实际问题,涵盖需求分析、数据收集、模型训练与部署等全流程。文章适合初学者和开发者学习AI基础与实战技能。
754 25
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
|
8月前
|
人工智能 语音技术
推动人工智能技术和产业变革,啥是核心驱动力?生成式人工智能认证(GAI认证)揭秘答案
人工智能(AI)正以前所未有的速度重塑世界,其发展离不开领军人才与创新生态的支持。文章探讨了AI领军人才的核心特质及培养路径,强调构建产学研深度融合的创新生态,并通过教育变革与GAI认证提升全民AI素养,为技术与产业变革提供持续动力。这不仅是推动社会高质量发展的关键,也为个人与企业带来了更多机遇。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
生成式人工智能的价值回归:重塑技术、社会与个体的发展轨迹
生成式人工智能(Generative AI)正以前所未有的速度重塑社会面貌。它从单一决策工具转变为创造性生产力引擎,推动知识生产、艺术创作与科学研究的发展。同时,其广泛应用引发社会生产力和生产关系的深刻变革,带来就业结构变化与社会公平挑战。此外,生成式AI还面临伦理法律问题,如透明性、责任归属及知识产权等。培生公司推出的生成式AI认证项目,旨在培养专业人才,促进技术与人文融合,助力技术可持续发展。总体而言,生成式AI正从工具属性向赋能属性升华,成为推动社会进步的新引擎。
|
8月前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
1258 62
|
6月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL消息传递接口的PyG替换
DGL (Deep Graph Learning) 和 PyG (Pytorch Geometric) 是两个主流的图神经网络库,它们在API设计和底层实现上有一定差异,在不同场景下,研究人员会使用不同的依赖库,昇腾NPU对PyG图机器学习库的支持亲和度更高,因此有些时候需要做DGL接口的PyG替换。
|
7月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
416 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
6月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL图构建接口的PyG替换
本文探讨了在图神经网络中将DGL接口替换为PyG实现的方法,重点以RFdiffusion蛋白质设计模型中的SE3Transformer为例。SE3Transformer通过SE(3)等变性提取三维几何特征,其图构建部分依赖DGL接口。文章详细介绍了两个关键函数的替换:`make_full_graph` 和 `make_topk_graph`。前者构建完全连接图,后者生成k近邻图。通过PyG的高效实现(如`knn_graph`),我们简化了图结构创建过程,并调整边特征处理逻辑以兼容不同框架,从而更好地支持昇腾NPU等硬件环境。此方法为跨库迁移提供了实用参考。

热门文章

最新文章