CoAtNet实战:使用CoAtNet对植物幼苗进行分类(pytorch)

简介: 虽然Transformer在CV任务上有非常强的学习建模能力,但是由于缺少了像CNN那样的归纳偏置,所以相比于CNN,Transformer的泛化能力就比较差。因此,如果只有Transformer进行全局信息的建模,在没有预训练(JFT-300M)的情况下,Transformer在性能上很难超过CNN(VOLO在没有预训练的情况下,一定程度上也是因为VOLO的Outlook Attention对特征信息进行了局部感知,相当于引入了归纳偏置)。既然CNN有更强的泛化能力,Transformer具有更强的学习能力,那么,为什么不能将Transformer和CNN进行一个结合呢?

虽然Transformer在CV任务上有非常强的学习建模能力,但是由于缺少了像CNN那样的归纳偏置,所以相比于CNN,Transformer的泛化能力就比较差。因此,如果只有Transformer进行全局信息的建模,在没有预训练(JFT-300M)的情况下,Transformer在性能上很难超过CNN(VOLO在没有预训练的情况下,一定程度上也是因为VOLO的Outlook Attention对特征信息进行了局部感知,相当于引入了归纳偏置)。既然CNN有更强的泛化能力,Transformer具有更强的学习能力,那么,为什么不能将Transformer和CNN进行一个结合呢?

谷歌的最新模型CoAtNet做了卷积 + Transformer的融合,在ImageNet-1K数据集上取得88.56%的成绩。今天我们就用CoAtNet实现植物幼苗的分类。

论文:https://arxiv.org/pdf/2106.04803v2.pdf

github复现:GitHub - chinhsuanwu/coatnet-pytorch: A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

image-20211213151126054

项目结构

CoAtNet_demo
│ 
├─data
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet
├─dataset
│  └─dataset.py
└─models
│    └─coatnet.py
│
└─train.py
│
└─test.py

数据集

数据集选用植物幼苗分类,总共12类。数据集连接如下:

           链接:https://pan.baidu.com/s/1gYb-3XCZBhBoEFyj6d_kdw
           提取码:q060

在工程的根目录新建data文件夹,获取数据集后,将trian和test解压放到data文件夹下面,如下图:

img

安装库,并导入需要的库

安装完成后,导入到项目中。

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from dataset.dataset import SeedlingData
from torch.autograd import Variable
from models.coatnet import coatnet_0

设置全局参数

设置使用GPU,设置学习率、BatchSize、epoch等参数

# 设置全局参数
modellr = 1e-4
BATCH_SIZE = 16
EPOCHS = 50
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

数据预处理

数据处理比较简单,没有做复杂的尝试,有兴趣的可以加入一些处理。

# 数据预处理

transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])
transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

数据读取

然后我们在dataset文件夹下面新建 init.py和dataset.py,在mydatasets.py文件夹写入下面的代码:

说一下代码的核心逻辑。

第一步 建立字典,定义类别对应的ID,用数字代替类别。

第二步 在__init__里面编写获取图片路径的方法。测试集只有一层路径直接读取,训练集在train文件夹下面是类别文件夹,先获取到类别,再获取到具体的图片路径。然后使用sklearn中切分数据集的方法,按照7:3的比例切分训练集和验证集。

第三步 在__getitem__方法中定义读取单个图片和类别的方法,由于图像中有位深度32位的,所以我在读取图像的时候做了转换。

代码如下:

# coding:utf8
import os
from PIL import Image
from torch.utils import data
from torchvision import transforms as T
from sklearn.model_selection import train_test_split
 
Labels = {'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3,
          'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8,
          'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}
 
 
class SeedlingData (data.Dataset):
 
    def __init__(self, root, transforms=None, train=True, test=False):
        """
        主要目标: 获取所有图片的地址,并根据训练,验证,测试划分数据
        """
        self.test = test
        self.transforms = transforms
 
        if self.test:
            imgs = [os.path.join(root, img) for img in os.listdir(root)]
            self.imgs = imgs
        else:
            imgs_labels = [os.path.join(root, img) for img in os.listdir(root)]
            imgs = []
            for imglable in imgs_labels:
                for imgname in os.listdir(imglable):
                    imgpath = os.path.join(imglable, imgname)
                    imgs.append(imgpath)
            trainval_files, val_files = train_test_split(imgs, test_size=0.3, random_state=42)
            if train:
                self.imgs = trainval_files
            else:
                self.imgs = val_files
 
    def __getitem__(self, index):
        """
        一次返回一张图片的数据
        """
        img_path = self.imgs[index]
        img_path=img_path.replace("\\",'/')
        if self.test:
            label = -1
        else:
            labelname = img_path.split('/')[-2]
            label = Labels[labelname]
        data = Image.open(img_path).convert('RGB')
        data = self.transforms(data)
        return data, label
 
    def __len__(self):
        return len(self.imgs)

然后我们在train.py调用SeedlingData读取数据 ,记着导入刚才写的dataset.py(from mydatasets import SeedlingData)

# 读取数据
dataset_train = SeedlingData('data/train', transforms=transform, train=True)
dataset_test = SeedlingData("data/train", transforms=transform_test, train=False)
# 导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

设置模型

  • 设置loss函数为nn.CrossEntropyLoss()。
  • 设置模型为coatnet_0,修改最后一层全连接输出改为12。
  • 优化器设置为adam。
  • 学习率调整策略改为余弦退火
# 实例化模型并且移动到GPU
criterion = nn.CrossEntropyLoss()

model_ft = coatnet_0()
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 12)
model_ft.to(DEVICE)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(model_ft.parameters(), lr=modellr)
cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer,T_max=20,eta_min=1e-9)
# 定义训练过程

def train(model, device, train_loader, optimizer, epoch):
    model.train()
    sum_loss = 0
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = Variable(data).to(device), Variable(target).to(device)
        output = model(data)
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print_loss = loss.data.item()
        sum_loss += print_loss
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item()))
    ave_loss = sum_loss / len(train_loader)
    print('epoch:{},loss:{}'.format(epoch, ave_loss))


# 验证过程
def val(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    with torch.no_grad():
        for data, target in test_loader:
            data, target = Variable(data).to(device), Variable(target).to(device)
            output = model(data)
            loss = criterion(output, target)
            _, pred = torch.max(output.data, 1)
            correct += torch.sum(pred == target)
            print_loss = loss.data.item()
            test_loss += print_loss
        correct = correct.data.item()
        acc = correct / total_num
        avgloss = test_loss / len(test_loader)
        print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            avgloss, correct, len(test_loader.dataset), 100 * acc))


# 训练

for epoch in range(1, EPOCHS + 1):
    train(model_ft, DEVICE, train_loader, optimizer, epoch)
    cosine_schedule.step()
    val(model_ft, DEVICE, test_loader)
torch.save(model_ft, 'model.pth')

测试

测试集存放的目录如下图:

image-20211213153331343

第一步 定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
           'Common wheat', 'Fat Hen', 'Loose Silky-bent',
           'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')

第二步 定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

transform_test = transforms.Compose([
         transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

第三步 加载model,并将模型放在DEVICE里。

DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)

第四步 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。

path = 'data/test/'
testList = os.listdir(path)
for file in testList:
    img = Image.open(path + file)
    img = transform_test(img)
    img.unsqueeze_(0)
    img = Variable(img).to(DEVICE)
    out = model(img)
    # Predict
    _, pred = torch.max(out.data, 1)
    print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))

测试完整代码:

import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os

classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
           'Common wheat', 'Fat Hen', 'Loose Silky-bent',
           'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)

path = 'data/test/'
testList = os.listdir(path)
for file in testList:
    img = Image.open(path + file)
    img = transform_test(img)
    img.unsqueeze_(0)
    img = Variable(img).to(DEVICE)
    out = model(img)
    # Predict
    _, pred = torch.max(out.data, 1)
    print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))

运行结果:

image-20211213153302733

目录
相关文章
|
6月前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
6月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
|
3月前
|
机器学习/深度学习 数据挖掘 TensorFlow
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
在数据驱动时代,Python凭借简洁的语法和强大的库支持,成为数据分析与机器学习的首选语言。Pandas和NumPy是Python数据分析的基础,前者提供高效的数据处理工具,后者则支持科学计算。TensorFlow与PyTorch作为深度学习领域的两大框架,助力数据科学家构建复杂神经网络,挖掘数据深层价值。通过Python打下的坚实基础,结合TensorFlow和PyTorch的强大功能,我们能在数据科学领域探索无限可能,解决复杂问题并推动科研进步。
67 0
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
177 1
|
5月前
|
机器学习/深度学习 数据挖掘 TensorFlow
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
【7月更文挑战第31天】在数据驱动时代,Python凭借其简洁性与强大的库支持,成为数据分析与机器学习的首选语言。**数据分析基础**从Pandas和NumPy开始,Pandas简化了数据处理和清洗,NumPy支持高效的数学运算。例如,加载并清洗CSV数据、计算总销售额等。
63 2
|
5月前
|
机器学习/深度学习 人工智能 数据挖掘
从0到1构建AI帝国:PyTorch深度学习框架下的数据分析与实战秘籍
【7月更文挑战第30天】PyTorch以其灵活性和易用性成为深度学习的首选框架。
70 2
|
5月前
|
机器学习/深度学习 数据挖掘 PyTorch
🚀PyTorch实战宝典:从数据分析小白到深度学习高手的飞跃之旅
【7月更文挑战第29天】在数据驱动的世界里, **PyTorch** 作为深度学习框架新星, 凭借其直观易用性和高效计算性能, 助力数据分析新手成为深度学习专家。首先, 掌握Pandas、Matplotlib等工具进行数据处理和可视化至关重要。接着, 安装配置PyTorch环境, 学习张量、自动求导等概念。通过构建简单线性回归模型, 如定义 `nn.Module` 类、设置损失函数和优化器, 进行训练和测试, 逐步过渡到复杂模型如CNN和RNN的应用。不断实践, 你将能熟练运用PyTorch解决实际问题。
88 1
|
7月前
|
机器学习/深度学习 JSON PyTorch
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
98 1
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】47. Pytorch图片样式迁移实战:将一张图片样式迁移至另一张图片,创作自己喜欢风格的图片【含完整源码】
【从零开始学习深度学习】47. Pytorch图片样式迁移实战:将一张图片样式迁移至另一张图片,创作自己喜欢风格的图片【含完整源码】
|
5月前
|
PyTorch 算法框架/工具 索引
pytorch实现水果2分类(蓝莓,苹果)
pytorch实现水果2分类(蓝莓,苹果)