矩阵再度扩容,解码阿里云数据中台的新品策略

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 数据中台的热潮,来自于企业们的数智化转型焦虑。尤其在传统行业,不少企业深感数智化转型的重要性却不知如何下手。而今年疫情加速打造了企业们的困境:如果依然在传统场景下运作,当冲击来袭,将面临缺人员、缺市场、缺供给、缺资金、缺服务等诸多缺口。在考虑如何生存、抢占市场的竞争中,匹配用户需求成为企业考虑的首位,对数据中台的需求应运而生。

风口行业巨擘出现


疫情期间,这一需求尤其明显。


今年4月和7月,工信部印发两期《中小企业数字化赋能服务产品及活动推荐目录》,发布223家服务商和254项服务产品及活动,阿里巴巴、腾讯等互联网电商平台及其服务产品和活动被重点推荐,被认为“一定程度上解决了中小企业商品存储、分销渠道受限及运营成本高等问题”。


从“中台”概念产生历史看,国内最早提及“中台”一词是在2015年,阿里巴巴进行组织升级,建设整合了阿里产品技术和数据能力的强大中台,组建“大中台,小前台”的组织和业务体制。几年后当“数据中台”成为科技圈热词之时,阿里早已走在前面。今年69日,在2020阿里云线上峰会上,阿里巴巴集团副总裁、数据技术及产品部负责人朋新宇表示,阿里云数据中台未来将要扶持100万家企业实现数智化。


围绕这一目标,阿里云数据中台近两年来通过推出多种行业解决方案,以及一系列数据产品,为企业搭建了数智化转型的基石。2020阿里云线上峰会上,除了赋能100万家企业的目标外,阿里云数据中台还推出了Quick AudienceQuick A+两款全新产品,并升级DataphinQuick BI两款产品。3个月后,阿里云数据中台又完成了Quick Audience1.02.0的进化。9月18日,在2020云栖大会上,阿里云数据中台官宣升级了产品Quick Audience2.0,并推出全新产品智能货品运营平台Quick Stock阿里云数据中台在产品矩阵构建上的加速推进,无疑是对整个数据中台行业,以及企业数智化转型趋势的推动。

 


场景化是新品打造的背后逻辑


从阿里云数据中台系列产品的打造路径看,阿里云深谙扎实基底、细分场景的产品逻辑。


阿里云数据中台最早推出了智能数据构建及管理平台Dataphin。随后推出Quick系列产品:满足企业可视化数据分析需求的新一代智能BI服务平台Quick BI、满足跨多端场景下的全域洞察产品Quick A+


在今年6月,Quick Audience 1.0版本出现,定位于“智能用户增长”,产品围绕消费者进行全方位的洞察和营销,最终实现购买。而在9月升级的Quick Audience2.0中,针对消费者的运营更深入、更全面。过去,单向的广告推送将升级为双向的人群互动,多点的营销触达升至消费者深度运营。


产品一步步升级之下,阿里云数据中台已形成了以“Dataphin”为基座,承载“Quick系列”的场景化核心产品矩阵,为企业输送数智化核心能力。这一产品打造逻辑,是基于阿里云数据中台具体到各个业务场景了解企业问题、挖掘企业需求,再针对性提出场景化解决方案的思路。


阿里云数据中台今年推出了Quick Audience1.0Quick Audience2.0Quick Stock,就是为了解决新零售业的核心问题。从人货场的角度来分析零售变革,可以看出新零售与以往零售模式上本质的差异。新零售带来的变革,不仅仅是单一要素驱动下人货场关系结构的变化,而是从消费者需求,到原料生产、到品牌厂商、流通体系、仓储体系以及前端销售乃至用户体验端的全链条式生态化反。


新零售是一次彻彻底底的由数字化技术支撑,以大数据、物联网、5G技术等作为链接节点的全产业重塑。从这一角度看,“场”变为线上渠道之际,“人”和“货”的场景都成为新挑战。在围绕“人”场景下,阿里云数据中台推出的Quick Audience,围绕消费者进行全方位的分析和营销,最终实现购买。以天猫618消费季为例,数据显示阿里云数据中台零售行业解决方案的作用下,LineFriends联名新品优选放大人群ROI提升了322%,养生壶这一品类ROI达到了6.85


在“货”的场景下,新发布的Quick Stock智能货品运营平台 “以货为中心”洞察市场。Quick Stock拥有线上线下全渠道货品数据覆盖,以强大的智能算法能力,为所有货品进行全方位多维度的打标,让商家了解货品的全貌。


同时,Quick Stock拥有与阿里经济体生态联动的优势,也能清楚洞察市场需求和货品状态,进行更好的商渠匹配。仅针对零售行业一项,阿里云数据中台就为“匹配人”和“匹配货”两个场景设计了两款产品,其中Quick Audience还在3个月内进行了更新。从细化到单个场景推出服务的动作看,未来阿里云数据中台会不断推出各类场景化产品,更有针对性的解决用户痛点。


目前,阿里云数据中台已经将其他场景产品列入日程中。据接近阿里云数据中台的人士介绍,阿里云数据中台正在对外孵化一款围绕智能实时决策的产品——该产品可能是解决金融风控场景下的实时决策提供数据能力。


传统的软件销售者、解决方案集成供应商已成为粗放的代名词,数字化进程下出现了一条正确而艰难的路——不断开发新场景、融合新场景、设计新场景。从“一招鲜吃遍天”的通用解决方案中走出来,在统一的方法论和统一数据体系的构建之上,为细分场景提供专属解决方案和数智产品,有效推动企业数智化转型。针对场景开发的产品将成为数据中台新的商业竞争力。


数字化加速下,企业自身发展通常表现为非线性的跃迁,基于新场景的敏捷响应能力成为必备,其中的关系在于,新场景开发越多,敏捷响应能力就越强,也越能够形成不确定时代的反脆弱机制。 


行业化是数据中台赛道的另一趋势

今后,行业可能不会单纯依赖通用化的数据中台。艾瑞咨询研究显示,服务厂商对企业客户业务的理解不够是阻碍数据中台行业发展的最大瓶颈。
而这一趋势,同样也在今年阿里云数据中台的两次重磅亮相中得以证明。除了场景化产品,阿里云数据中台另一个可见趋势是行业化。
先是在 2020阿里云线上峰会上,阿里巴巴集团副总裁、数据技术及产品部负责人朋新宇在推出新产品之际,还发布四大行业数据中台解决方案:零售数据中台、金融数据中台、政务数据中台以及互联网企业数据中台,将进一步把数据中台引入全速重构行业数智化的深地。
紧接着在9月份的2020云栖大会上,来自地产、旅游行业的企业也分享了其利用阿里云数据中台实现数智化的经验。
亚洲知名的大型多元化房地产集团凯德自去年10月与阿里云数据中台合作,不仅消除了数据孤岛,而且完成了凯德自身数据资产的沉淀。现在,凯德的数据分析人员取数时间是过去的1/5,业务人员根据每天定点推送的数据报表进行完整数据洞察。
而在旅游业,针对景点复杂的管理因素,阿里云数据中台也展现出垂直行业解决方案的特点。作为我国第55处世界遗产的良渚古城遗址公园,占地面积3.66平方公里,包含多个景点,管理复杂。而良渚通过阿里云数据中台实现票务、停车、入园等多个景区基础业务数据系统的构建,打造包括游客服务、景区管理在内的数字化体系,完成了智慧景区应用探索的重要一步。
从四大行业解决方案,到凯德、良渚为代表的地产、旅游行业的成功试水,不难推测阿里云数据中台今后会面向更多行业进行裂变,精耕行业,打造断层优势。
从竞争逻辑看,在垂直场景下阿里云能更好地服务特定类型的行业客户,提供更加有针对性的行业解决方案,可以更好地助力该细分行业企业客户进行数智化转型升级。
针对垂直行业开发的数据中台重要性在于,数据中台支持的业务场景会不断反馈数据到中台,因此数据中台具有很强的马太效应。随着应用加深,垂直行业的数据中台会出现寡头效应。在垂直行业率先提出解决方案,并非是提前出发,而是创造了不可逾越的优势。
同时,从阿里云数据中台开放的生态合作伙伴战略看,阿里云数据中台正输入优秀伙伴的行业经验,以产品化模式输出行业数据模型,实现同一个行业的多个客户快速复制,提高交付效率,降低交付成本,推动行业发展的数智化推动力。
2018年,阿里云数据中台正式对外服务之初,就曾提出将与生态共建,共同帮助企业客户实现数智化。
迄今为止,阿里云数据中台已与包括埃森哲、毕马威、德勤等多个领域内权威企业合作。
阿里云数据中台认识到对行业的判断以及细分打造能力决定了其在产业互联网时代的竞争力,通过场景化、行业化的产品布局,阿里云数据中台不断为自身的竞争增加筹码。

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
6月前
|
关系型数据库 MySQL Apache
**ADB MySQL湖仓版能够平滑迁移到湖仓**,阿里云提供了相应的迁移工具和服务来简化这一过程。
**ADB MySQL湖仓版能够平滑迁移到湖仓**,阿里云提供了相应的迁移工具和服务来简化这一过程。
335 2
|
3月前
|
存储 监控 安全
阿里云数据库(ADB)的多租户秘籍:资源隔离的魔法如何施展?
【8月更文挑战第27天】多租户系统在云计算与大数据领域日益重要,它让不同用户或组织能在共享基础设施上独立运行应用和服务,同时确保资源隔离与安全。ADB(如阿里云数据库)通过资源组及标签实现高效多租户隔离。资源组作为一种软隔离策略,允许为不同租户分配独立的计算和存储资源,并设置资源上限;资源标签则支持更细粒度的硬隔离,可为每个数据库表或查询指定特定标签,确保资源有效分配。此外,ADB还提供了资源监控与告警功能,帮助管理员实时监控并调整资源分配,避免性能瓶颈。这种灵活且高效的资源隔离方案为多租户环境下的数据处理提供了强大支持。
139 0
|
6月前
|
弹性计算 自然语言处理 开发工具
通过阿里云 Milvus 和 LangChain 快速构建 LLM 问答系统
本文介绍如何通过整合阿里云Milvus、阿里云DashScope Embedding模型与阿里云PAI(EAS)模型服务,构建一个由LLM(大型语言模型)驱动的问题解答应用,并着重演示了如何搭建基于这些技术的RAG对话系统。
通过阿里云 Milvus 和 LangChain 快速构建 LLM 问答系统
|
存储 人工智能 关系型数据库
5倍性能提升,阿里云AnalyticDB PostgreSQL版新一代实时智能引擎重磅发布
2023 云栖大会上,AnalyticDB for PostgreSQL新一代实时智能引擎重磅发布,全自研计算和行列混存引擎较比开源Greenplum有5倍以上性能提升。AnalyticDB for PostgreSQL与通义大模型家族深度集成,推出一站式AIGC解决方案。阿里云新发布的行业模型及“百炼”平台,采用AnalyticDB for PostgreSQL作为内置向量检索引擎,性能较开源增强了2~5倍。大会上来自厦门国际银行、三七互娱等知名企业代表和瑶池数据库团队产品及技术资深专家们结合真实场景实践,深入分享了最新的技术进展和解析。
5倍性能提升,阿里云AnalyticDB PostgreSQL版新一代实时智能引擎重磅发布
|
6月前
|
开发工具 git
阿里云部署 ChatGLM2-6B 与 langchain+chatGLM
阿里云部署 ChatGLM2-6B 与 langchain+chatGLM
483 1
|
6月前
|
分布式计算 关系型数据库 MySQL
阿里云ADB MySQL X Intel联合推出训练营,参营完成任务即可获100元话费卡!
AnalyticDB MySQL和Intel联合推出基于ADB Spark的训练营,ADB新用户参营完成任务即可获得价值100元的话费卡权益包!下图可扫码参加,也可直接点击链接前往 https://edu.aliyun.com/trainingcamp/355118
阿里云ADB MySQL X Intel联合推出训练营,参营完成任务即可获100元话费卡!
|
人工智能 Cloud Native 关系型数据库
阿里云数据库国际峰会首度在印尼召开,AnalyticDB向量引擎支持定制AIGC应用
阿里云瑶池数据库面向海外市场正式升级云原生一站式数据管理与服务平台
|
存储 机器学习/深度学习 人工智能
基于 阿里云 ACK 搭建开源向量数据库 Milvus
生成式 AI(Generative AI)引爆了向量数据库(Vector Database)市场,基于大模型的各种应用场景会需要使用到向量数据库。 其中,Milvus 是一个高度灵活、可靠且速度极快的云原生开源向量数据库。它为 embedding 相似性搜索和 AI 应用程序提供支持,并努力使每个组织都可以访问向量数据库。 Milvus 可以存储、索引和管理由深度神经网络和其他机器学习(ML)模型生成的十亿级别以上的 embedding 向量。 本文介绍在阿里云ACK上部署Milvus并且通过attu访问的步骤。
3356 0
|
SQL 存储 DataWorks
《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——一、产品概述
《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——一、产品概述
|
SQL 存储 Cloud Native
《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——二、产品架构及原理
《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——二、产品架构及原理
下一篇
无影云桌面