Spring Cloud构建微服务架构:分布式服务跟踪(抽样收集)【Dalston版】

简介: Spring Cloud构建微服务架构:分布式服务跟踪(抽样收集)【Dalston版】

通过Trace IDSpan ID已经实现了对分布式系统中的请求跟踪,而这些记录的跟踪信息最终会被分析系统收集起来,并用来实现对分布式系统的监控和分析功能,比如:预警延迟过长的请求链路、查询请求链路的调用明细等。此时,我们在对接分析系统时就会碰到一个问题:分析系统在收集跟踪信息的时候,需要收集多少量的跟踪信息才合适呢?

理论上来说,我们收集的跟踪信息越多就可以更好的反映出系统的实际运行情况,并给出更精准的预警和分析,但是在高并发的分布式系统运行时,大量的请求调用会产生海量的跟踪日志信息,如果我们收集过多的跟踪信息将会对我们整个分布式系统的性能造成一定的影响,同时保存大量的日志信息也需要不少的存储开销。所以,在Sleuth中采用了抽象收集的方式来为跟踪信息打上收集标记,也就是我们之前在日志信息中看到的第四个boolean类型的值,它代表了该信息是否要被后续的跟踪信息收集器获取和存储。

在Sleuth中的抽样收集策略是通过Sampler接口实现的,它的定义如下:

public interface Sampler {
    /**
     * @return true if the span is not null and should be exported to the tracing system
    */
    boolean isSampled(Span span);
}

通过实现isSampled方法,Spring Cloud Sleuth会在产生跟踪信息的时候调用它来为跟踪信息生成是否要被收集的标志。需要注意的是,即使isSampled返回了false,它仅代表该跟踪信息不被输出到后续对接的远程分析系统(比如:Zipkin),对于请求的跟踪活动依然会进行,所以我们在日志中还是能看到收集标识为false的记录。

默认情况下,Sleuth会使用PercentageBasedSampler实现的抽样策略,以请求百分比的方式配置和收集跟踪信息,我们可以通过在application.properties中配置下面的参数对其百分比值进行设置,它的默认值为0.1,代表收集10%的请求跟踪信息。

spring.sleuth.sampler.percentage=0.1

在开发调试期间,通常会收集全部跟踪信息输出到远程仓库,我们可以将其值设置为1,或者也可以通过创建AlwaysSampler的Bean(它实现的isSampled方法始终返回true)来覆盖默认的PercentageBasedSampler策略,比如:

@Bean
public AlwaysSampler defaultSampler() {
    return new AlwaysSampler();
}

在实际使用时,通过与Span对象中存储信息的配合,我们可以根据实际情况做出更贴近需求的抽样策略,比如实现一个仅对包含指定Tag的抽样策略:

public class TagSampler implements Sampler {
    private String tag;
    public TagSampler(String tag) {
        this.tag = tag;
    }
    @Override
    public boolean isSampled(Span span) {
        return span.tags().get(tag) != null;
    }
}

由于跟踪日志信息的数据价值往往仅在最近的一段时间内非常有用,比如:一周。那么我们在设计抽样策略时,主要考虑在不对系统造成明显性能影响的情况下,以在日志保留时间窗内充分利用存储空间的原则来实现抽样策略。

完整示例:

者可以根据喜好选择下面的两个仓库中查看trace-1trace-2两个项目:

如果您对这些感兴趣,欢迎star、follow、收藏、转发给予支持!

本文内容部分节选自我的《Spring Cloud微服务实战》,但对依赖的Spring Boot和Spring Cloud版本做了升级。

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
目录
相关文章
|
2月前
|
人工智能 Java Nacos
基于 Spring AI Alibaba + Nacos 的分布式 Multi-Agent 构建指南
本文将针对 Spring AI Alibaba + Nacos 的分布式多智能体构建方案展开介绍,同时结合 Demo 说明快速开发方法与实际效果。
2211 64
|
3月前
|
存储 安全 Java
管理 Spring 微服务中的分布式会话
在微服务架构中,管理分布式会话是确保用户体验一致性和系统可扩展性的关键挑战。本文探讨了在 Spring 框架下实现分布式会话管理的多种方法,包括集中式会话存储和客户端会话存储(如 Cookie),并分析了它们的优缺点。同时,文章还涵盖了与分布式会话相关的安全考虑,如数据加密、令牌验证、安全 Cookie 政策以及服务间身份验证。此外,文中强调了分布式会话在提升系统可扩展性、增强可用性、实现数据一致性及优化资源利用方面的显著优势。通过合理选择会话管理策略,结合 Spring 提供的强大工具,开发人员可以在保证系统鲁棒性的同时,提供无缝的用户体验。
|
3月前
|
人工智能 监控 测试技术
告别只会写提示词:构建生产级LLM系统的完整架构图​
本文系统梳理了从提示词到生产级LLM产品的八大核心能力:提示词工程、上下文工程、微调、RAG、智能体开发、部署、优化与可观测性,助你构建可落地、可迭代的AI产品体系。
592 51
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
860 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
2月前
|
负载均衡 Java API
《深入理解Spring》Spring Cloud 构建分布式系统的微服务全家桶
Spring Cloud为微服务架构提供一站式解决方案,涵盖服务注册、配置管理、负载均衡、熔断限流等核心功能,助力开发者构建高可用、易扩展的分布式系统,并持续向云原生演进。
|
3月前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
|
3月前
|
SQL 弹性计算 关系型数据库
如何用读写分离构建高效稳定的数据库架构?
在少写多读业务场景中,主实例读请求压力大,影响性能。通过创建只读实例并使用数据库代理实现读写分离,可有效降低主实例负载,提升系统性能与可用性。本文详解配置步骤,助你构建高效稳定的数据库架构。
|
前端开发 Java 数据库
Spring架构及核心模块
1.Hello Spring Spring是一个轻量级控制反转(IOC)和面向切面(AOP)的容器框架,主要是为了解决企业应用开发的复杂性而诞生的。它采用模块化分层设计,具有以下特点: 轻量低侵入式设计,代码污染极低; 控制反转和依赖注入实现了松散耦合; 切面编程降低业务耦合度,提高程序的可重用性及开发效率; ORM和DAO简化了底层的数据库访问; 方便集成各种优秀框架等。
202 1
Spring架构及核心模块
|
XML Java 数据库连接
今天说一下Spring的架构模块!
这是一个基础知识篇,看到这篇文章的,希望去多多理解一些更多的底层知识,不要不求甚解,要知其然知己所以然。
221 0
|
5月前
|
Java Spring 容器
SpringBoot自动配置的原理是什么?
Spring Boot自动配置核心在于@EnableAutoConfiguration注解,它通过@Import导入配置选择器,加载META-INF/spring.factories中定义的自动配置类。这些类根据@Conditional系列注解判断是否生效。但Spring Boot 3.0后已弃用spring.factories,改用新格式的.imports文件进行配置。
969 0

热门文章

最新文章