面试官:Redis 有哪些拓展方案?

简介: 作为最广泛使用的KV内存数据库之一,在当今的大流量时代,单机模式略显单薄,免不了要有一些拓展的方案。为最广泛使用的KV内存数据库之一,在当今的大流量时代,单机模式略显单薄,免不了要有一些拓展的方案。

前言

Redis大家都不陌生,就算是没用过,也都听说过了。


作为最广泛使用的KV内存数据库之一,在当今的大流量时代,单机模式略显单薄,免不了要有一些拓展的方案。为最广泛使用的KV内存数据库之一,在当今的大流量时代,单机模式略显单薄,免不了要有一些拓展的方案。


笔者下文会对各种方案进行介绍,并且给出场景,实现 等等概述,还会提到一些新手常见的误区。

正文

先从基础的拓展方式开始,这样更便于理解较高级的模式。


分区

概述

分区(Partitioning)是一种最为简单的拓展方式。


在我们面临单机的存储空间瓶颈时,第一点就能想到像传统的关系型数据库一样,进行数据分区。


或者假设手中有N台机器可以作为Redis服务器


所有机器内存总和有256G, 而客户端正好也需要一个大内存的存储空间。


我们除了可以把内存条都拆下来焊到一个机器上,也可以选择分区使用,这样又拓展了计算能力。


单指分区来讲,即将全部数据分散在多个Redis实例中,每个实例不需要关联,可以是完全独立的。


image.png


使用方式

客户端处理

和传统的数据库分库分表一样,可以从key入手,先进行计算,找到对应数据存储的实例在进行操作。


范围角度,比如orderId:1orderId:1000放入实例1,orderId:1001orderId:2000放入实例2...


哈希计算,就像我们的hashmap一样,用hash函数加上位运算或者取模,高级玩法还有一致性Hash等操作,找到对应的实例进行操作


使用代理中间件

我们可以开发独立的代理中间件,屏蔽掉处理数据分片的逻辑,独立运行。


当然也有他人已经造好的轮子,Redis也有优秀的代理中间件,譬如Twemproxy,或者codis,可以结合场景选择是否使用。


缺点

无缘多key操作,key都不一定在一个实例上,那么多key操作或者多key事务自然是不支持。

维护成本,由于每个实例在物理和逻辑上,都属于单独的一个节点,缺乏统一管理。

灵活性有限,范围分片还好,比如hash+MOD这种方式,如果想动态调整Redis实例的数量,就要考虑大量数据迁移,这就非常麻烦了。

同为开发者,深知我们虽然总能“曲线救国”的完成一些当前环境不支持的功能,但是总归要麻烦一些。


主从

概述数据迁移

常说的主从(Master-Slave),也就是复制(Replication)方式,怎么称呼都可以。


同上面的分区一样,也是Redis高可用架构的基础,新手可能会误以为这类基础模式即是“高可用”,这并不是十分正确的。


分区暂时能解决单点无法容纳的数据量问题,但是一个Key还是只在一个实例上,在大流量时代显得不那么可靠。


主从就是另一个纬度的拓展,节点将数据同步到从节点,就像将实例“分身”了一样,可靠性又提高了不少。


图画的有些夸张了,主要还是想体现结构灵活,是一主一从,还是一主多从,还是一主多从多从... 看你心情


有了“实例分身”,自然就可以做读写分离,将读流量均摊在各个从节点。


使用方式


高手云集的时代,聊天软件难免要备上这么一张表情包。


这表情包和使用方式有什么关系呢?首先看看使用方式:


作为主节点的Redis实例,并不要求配置任何参数,只需要正常启动

作为从节点的实例,使用配置文件或命令方式REPLICAOF 主节点Host 主节点port即可完成主从配置

是不是和表情包一样,“dalao”没动,我去“抱大腿”。


这样一个主从最小配置就完成了,主从实例即可对外提供服务。


命令里的“主节点”是相对的,slave也可以抱slave大腿,也就是上文提到的结构灵活。


缺点

slave节点都是只读的,如果写流量大的场景,就有些力不从心了。 那我把slave节点只读关掉不就行了?当然不行,数据复制是由主到从,从节点独有数据同步不到主节点,数据就不一致了。

故障转移不友好,主节点挂掉后,写处理就无处安放,需要手工的设定新的主节点,如使用REPLICAOF no one(谁大腿我都不抱了) 晋升为主节点,再梳理其他slave节点的新主配置,相对来说比较麻烦。

哨兵

概述

主从的手工故障转移,肯定让人很难接受,自然就出现了高可用方案-哨兵(Sentinel)。


我们可以在主从架构不变的场景,直接加入Redis Sentinel,对节点进行监控,来完成自动的故障发现与转移。


并且还能够充当配置提供者,提供主节点的信息,就算发生了故障转移,也能提供正确的地址。


哨兵本身也是Redis实例的一种,但不作为数据存储方使用,启动命令也是不一样的。


虽然图有些复杂,看起来像要召唤光能使者。


其实实际使用起来是很便捷的。


使用方式


相关文章
|
2月前
|
存储 缓存 NoSQL
Redis常见面试题全解析
Redis面试高频考点全解析:从过期删除、内存淘汰策略,到缓存雪崩、击穿、穿透及BigKey问题,深入原理与实战解决方案,助你轻松应对技术挑战,提升系统性能与稳定性。(238字)
|
7月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
3月前
|
存储 监控 NoSQL
Redis高可用架构全解析:从主从复制到集群方案
Redis高可用确保服务持续稳定,避免单点故障导致数据丢失或业务中断。通过主从复制实现数据冗余,哨兵模式支持自动故障转移,Cluster集群则提供分布式数据分片与水平扩展,三者层层递进,保障读写分离、容灾切换与大规模数据存储,构建高性能、高可靠的Redis架构体系。
|
5月前
|
存储 NoSQL 定位技术
Redis数据类型面试给分情况
Redis常见数据类型包括:string、hash、list、set、zset(有序集合)。此外还包含高级结构如bitmap、hyperloglog、geo。不同场景可选用合适类型,如库存用string,对象存hash,列表用list,去重场景用set,排行用zset,签到用bitmap,统计访问量用hyperloglog,地理位置用geo。
132 5
|
4月前
|
监控 NoSQL 关系型数据库
保障Redis与MySQL数据一致性的强化方案
在设计时,需要充分考虑到业务场景和系统复杂度,避免为了追求一致性而过度牺牲系统性能。保持简洁但有效的策略往往比采取过于复杂的方案更加实际。同时,各种方案都需要在实际业务场景中经过慎重评估和充分测试才可以投入生产环境。
275 0
|
6月前
|
缓存 NoSQL Java
Java Redis 面试题集锦 常见高频面试题目及解析
本文总结了Redis在Java中的核心面试题,包括数据类型操作、单线程高性能原理、键过期策略及分布式锁实现等关键内容。通过Jedis代码示例展示了String、List等数据类型的操作方法,讲解了惰性删除和定期删除相结合的过期策略,并提供了Spring Boot配置Redis过期时间的方案。文章还探讨了缓存穿透、雪崩等问题解决方案,以及基于Redis的分布式锁实现,帮助开发者全面掌握Redis在Java应用中的实践要点。
371 6
|
7月前
|
NoSQL 算法 安全
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
578 3
|
8月前
|
存储 NoSQL Redis
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 +  无锁架构 +  EDA架构  + 异步日志 + 集群架构
|
9月前
|
存储 监控 NoSQL
Redis集群有哪些方案
1. 主从复制集群 : 读写分离, 一主多从 , 解决高并发读的问题 2. 哨兵集群 : 主从集群的结构之上 , 加入了哨兵用于监控集群状态 , 主节点出现故障, 执行主从切换 , 解决高可用问题 3. Cluster分片集群 : 多主多从 , 解决高并发写的问题, 以及海量数据存储问题 , 每个主节点存储一部分集群数据
|
9月前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)

热门文章

最新文章