使用 Prometheus + Grafana 监控 k8s 上的 Spring Boot 应用

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 本文主要介绍如何使用 Prometheus 和 Grafana 可视化监控运行在 k8s 上的 Spring Boot 应用,监控指标包括 CPU、内存、线程信息、日志信息、HTTP 请求、JVM 等。

背景

本文主要介绍如何使用 Prometheus 和 Grafana 可视化监控运行在 k8s 上的 Spring Boot 应用,监控指标包括 CPU、内存、线程信息、日志信息、HTTP 请求、JVM 等。


技术方案


技术方案如下图所示:image.png


首先我们需要在 Spring Boot 应用中使用 Spring Boot Actuator 监控应用、暴露指标,并使用 Micrometer Prometheus 将 Actuator 监控指标转换为 Prometheus 格式。

Micrometer 为 Java 平台上的性能数据收集提供了一个通用的 API,类似于 SLF4J ,只不过它关注的不是Logging(日志),而是application metrics(应用指标)。 简而言之,它就是应用监控界的SLF4J。


然后在 k8s 集群中,我们需要通过 Service 对外提供 Spring Boot 应用的指标接口。

Prometheus 是一个开源系统监控和警报工具包,可以采集监控指标,并存储为时间序列数据,Prometheus 还提供了灵活的查询语言 PromQL 来查询数据。Prometheus 通过拉模型采集指标,所以我们需要在 Prometheus 集群中配置服务发现(ServiceMonitor)来定期从应用中抓取指标。


Grafana 是一个开源的可视化分析平台,可以用它创建监控仪表盘、配置告警等。

整体个配置流程如下:

image.png


部署应用

应用配置

pom.xml 中添加如下配置:


<!-- 开启 Spring Boot Actuator --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId></dependency><!-- 将 Actuator 指标转换为 Prometheus 格式 --><dependency><groupId>io.micrometer</groupId><artifactId>micrometer-registry-prometheus</artifactId><version>${micrometer.version}</version></dependency>



然后修改 application.yaml 中添加 Spring Boot Actuator 相关配置:


spring:  application:    name: spring-boot-demo
management:  endpoints:    web:      exposure:        include: "*"    health:      show-details: always
  metrics:    export:      prometheus:        enable: true    tags:      application: spring-boot-demo



至此,应用配置就完成了,可以通过 /actuator/prometheus 接口查看配置是否正确:


$ curl'http://localhost:8080/actuator/prometheus'-i-X GET


返回结果如下所示:


HTTP/1.1 200 OK
Content-Type: text/plain;version=0.0.4;charset=utf-8
Content-Length: 2375# HELP jvm_buffer_memory_used_bytes An estimate of the memory that the Java virtual machine is using for this buffer pool# TYPE jvm_buffer_memory_used_bytes gaugejvm_buffer_memory_used_bytes{id="direct",} 489719.0
jvm_buffer_memory_used_bytes{id="mapped",} 0.0
# HELP jvm_memory_committed_bytes The amount of memory in bytes that is committed for the Java virtual machine to use# TYPE jvm_memory_committed_bytes gaugejvm_memory_committed_bytes{area="heap",id="PS Survivor Space",} 5.1380224E7
jvm_memory_committed_bytes{area="heap",id="PS Old Gen",} 4.86539264E8
jvm_memory_committed_bytes{area="heap",id="PS Eden Space",} 2.11812352E8
jvm_memory_committed_bytes{area="nonheap",id="Metaspace",} 1.62439168E8
jvm_memory_committed_bytes{area="nonheap",id="Code Cache",} 5.4329344E7
jvm_memory_committed_bytes{area="nonheap",id="Compressed Class Space",} 2.4551424E7
# HELP jvm_buffer_total_capacity_bytes An estimate of the total capacity of the buffers in this pool# TYPE jvm_buffer_total_capacity_bytes gaugejvm_buffer_total_capacity_bytes{id="direct",} 489718.0
jvm_buffer_total_capacity_bytes{id="mapped",} 0.0
# HELP jvm_memory_max_bytes The maximum amount of memory in bytes that can be used for memory management# TYPE jvm_memory_max_bytes gaugejvm_memory_max_bytes{area="heap",id="PS Survivor Space",} 5.1380224E7
jvm_memory_max_bytes{area="heap",id="PS Old Gen",} 7.16177408E8
jvm_memory_max_bytes{area="heap",id="PS Eden Space",} 2.31735296E8
jvm_memory_max_bytes{area="nonheap",id="Metaspace",} -1.0
jvm_memory_max_bytes{area="nonheap",id="Code Cache",} 2.5165824E8
jvm_memory_max_bytes{area="nonheap",id="Compressed Class Space",} 1.073741824E9
# HELP jvm_buffer_count_buffers An estimate of the number of buffers in the pool# TYPE jvm_buffer_count_buffers gaugejvm_buffer_count_buffers{id="direct",} 17.0
jvm_buffer_count_buffers{id="mapped",} 0.0
# HELP jvm_memory_used_bytes The amount of used memory# TYPE jvm_memory_used_bytes gaugejvm_memory_used_bytes{area="heap",id="PS Survivor Space",} 5.1139432E7
jvm_memory_used_bytes{area="heap",id="PS Old Gen",} 9.7572216E7
jvm_memory_used_bytes{area="heap",id="PS Eden Space",} 1.47234248E8
jvm_memory_used_bytes{area="nonheap",id="Metaspace",} 1.46403048E8
jvm_memory_used_bytes{area="nonheap",id="Code Cache",} 5.3970112E7
jvm_memory_used_bytes{area="nonheap",id="Compressed Class Space",} 2.1374208E7


配置 Service


因为应用是部署在 k8s 上的,由多个 Pod 组成,所以还需要为 Pod 添加 Service,对外提供 HTTP 服务,这样 Prometheus 才可以抓取监控指标。

在 k8s 中添加类似下面的 Service:

apiVersion: v1
kind: Service
metadata:
  labels:
    app: spring-boot-demo-exporter
  name: spring-boot-demo-exporter
  namespace: default
spec:
  ports:
- name: spring-boot-demo-exporter
      port: 8080      protocol: TCP
      targetPort: 8080  selector:
    app: spring-boot-demo
  type: NodePort

需要注意 spec.selector 需要与 Pod 的标签对应。例如使用 Deployment 部署应用,则需要与 Deployment 的 spec.template.metadata.labels 对应,这样 Service 才能知道对应的 Pod。


配置服务发现

如果使用的是自己部署的 Prometheus 服务,则可以在 prometheus.yml 中添加上 Service 对应的任务,例如:

scrape_configs:
# ...-  job_name: 'spring-boot-demo'# Prometheus 任务名称,自定义     metrics_path: '/actuator/prometheus'# 指标获取路径     scrape_interval: 5s # 抓取指标的间隔时间     static_configs:
- targets: ['spring-boot-demo-exporter:8080'] # 指标访问入口,即 k8s 集群的 Service


如果使用的是云厂商提供的 Prometheus 服务,则需要安装云厂商的规则添加服务发现。如 阿里云 Prometheus 监控 的 ServiceMonitor 配置如下:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: spring-boot-exporter
  namespace: default
spec:
  endpoints:
- interval: 30s
# Prometheus Exporter 对应的 Path 的值    path: /actuator/prometheus
# service.yaml 中 Prometheus Exporter 对应的 Port 的 Name 字段的值    port: spring-boot-exporter
  namespaceSelector:
    any: true  selector:
    matchLabels:
# service.yaml 的 Label 字段的值以定位目标 service.yaml      app: spring-boot-demo-exporter



配置大盘

Grafana 提供了丰富的大盘模板,可以在其官网搜索合适的大盘导入到自己的 Grafana 监控中。

image.png



我使用的是这两个大盘:



最终效果预览如下:


image.png

Spring Boot 监控

image.png

JVM 监控




总结


至此,基于 Prometheus + Grafana 的 Spring Boot 应用监控系统就创建完成了。接下来还可以使用 Grafana 实现告警,这类就不赘述了。


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
2天前
|
人工智能 Kubernetes 安全
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
31 13
|
2天前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。
|
10天前
|
XML Java 数据格式
Spring Core核心类库的功能与应用实践分析
【12月更文挑战第1天】大家好,今天我们来聊聊Spring Core这个强大的核心类库。Spring Core作为Spring框架的基础,提供了控制反转(IOC)和依赖注入(DI)等核心功能,以及企业级功能,如JNDI和定时任务等。通过本文,我们将从概述、功能点、背景、业务点、底层原理等多个方面深入剖析Spring Core,并通过多个Java示例展示其应用实践,同时指出对应实践的优缺点。
34 14
|
8天前
|
XML 前端开发 安全
Spring MVC:深入理解与应用实践
Spring MVC是Spring框架提供的一个用于构建Web应用程序的Model-View-Controller(MVC)实现。它通过分离业务逻辑、数据、显示来组织代码,使得Web应用程序的开发变得更加简洁和高效。本文将从概述、功能点、背景、业务点、底层原理等多个方面深入剖析Spring MVC,并通过多个Java示例展示其应用实践,同时指出对应实践的优缺点。
30 2
|
14天前
|
存储 Prometheus 监控
监控堆外第三方监控工具Prometheus
监控堆外第三方监控工具Prometheus
34 3
|
17天前
|
JSON 安全 算法
Spring Boot 应用如何实现 JWT 认证?
Spring Boot 应用如何实现 JWT 认证?
45 8
|
15天前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
23 1
|
17天前
|
存储 Prometheus 运维
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案。该集成结合了ARMS的基础设施监控能力和Prometheus的灵活配置及社区支持,实现了全面、精准的系统状态、性能和错误监控,提升了应用的稳定性和管理效率。通过统一的数据视图和高级查询功能,帮助企业有效应对云原生挑战,促进业务的持续发展。
25 3
|
22天前
|
Kubernetes 监控 安全
容器化技术:Docker与Kubernetes的实战应用
容器化技术:Docker与Kubernetes的实战应用
|
23天前
|
Java Docker 微服务
利用Docker容器化部署Spring Boot应用
利用Docker容器化部署Spring Boot应用
44 0