Nat. Mach. Intel. | IBM RXN: 深度学习在化学反应分类上大放异彩

本文涉及的产品
公网NAT网关,每月750个小时 15CU
简介: Nat. Mach. Intel. | IBM RXN: 深度学习在化学反应分类上大放异彩

最近IBM和伯尔尼大学的研究人员利用基于自注意力机制的深度神经网络实现了对化学反应的分类,该项成果发布于Nature Machine Intelligence杂志上。

image.png化学反应的分类对化学家们有很高的价值,比如利用同类反应的相似成份推测最佳反应条件等。近年来,一些机器学习方法被用于化学反应的分类,但是都存在一定的局限。IBM和伯尔尼大学的研究人员提出使用BERT(Bidirectional Encoder Representations from Transformers)模型,该模型不同于由专家们根据经验编写大量规则的传统分类方法,而是通过化学反应方程式文本便能实现化学反应分类的预测。研究者在13.2万个化学反应上进行了测试,最高可达98.2%的分类精度,而传统方法仅为41%。此外,该模型使用注意力机制,相较于传统方式能更好的捕捉到对反应分类起关键作用的成份,该项工作有望开辟有机合成领域新的未来。


BERT模型基于“自注意力”机制,可以利用大规模的文本数据学习语言特征,研究者们首先将化学反应式转换为SMILES格式,相当于对化学反应式进行了语言描述,图1为两个化学反应式及其对应的SMILES 表示:

image.png

图1 化学反应式案例及其对应的SMILES representation

然后利用BERT模型进行语言学习,即经过若干个Tranformer神经网络结构,得到名为RXNFP的向量,然后基于此向量进行化学反应分类,具体过程如图2。

image.png

图2 BERT模型用于化学反应分类

BERT模型的注意力机制可以发现进行分类的关键作用成份,如图3,格图的纵轴对应BERT模型的不同层,横轴对应每一个反应成份,颜色越深表示不同层对某个成份的关注度越高。

image.png

图3 注意力权重解读

基于BERT模型,化学反应可以表示成一个固定维度的向量,研究者将不同化学反应描绘在一张图上,如图4,从图中可以观察到不同化学反应之间的关系。

image.png

图4 化学反应的向量可视化,不同颜色代表不同的化学反应,左下图为预训练网络结果,中间图为训练后的网络所得结果

RXN Chemistry demo

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
目录
相关文章
|
3月前
|
机器学习/深度学习 数据库 数据格式
深度学习之化学反应预测
基于深度学习的化学反应预测是通过深度神经网络模型来分析和预测化学反应的过程及其产物。传统的化学反应预测依赖于专家知识和实验验证,而深度学习的引入使得可以从大规模的化学数据中自动学习复杂的反应规律,提升预测的精度与效率。
128 3
|
8月前
|
算法 数据可视化 数据挖掘
IBM SPSS Modeler分类决策树C5.0模型分析空气污染物数据
IBM SPSS Modeler分类决策树C5.0模型分析空气污染物数据
|
机器学习/深度学习 数据采集 人工智能
将理论注入深度学习,对过渡金属表面进行可解释的化学反应性预测
将理论注入深度学习,对过渡金属表面进行可解释的化学反应性预测
116 0
|
机器学习/深度学习 人工智能 算法
「几何深度学习」从古希腊到AlphaFold,「图神经网络」起源于物理与化学
「几何深度学习」从古希腊到AlphaFold,「图神经网络」起源于物理与化学
305 0
|
机器学习/深度学习 NoSQL 测试技术
Nat. Mach. Intell. | 探索稀疏化学空间的化学语言模型新策略
Nat. Mach. Intell. | 探索稀疏化学空间的化学语言模型新策略
236 0
Nat. Mach. Intell. | 探索稀疏化学空间的化学语言模型新策略
|
机器学习/深度学习 编解码
Nat. Mach. Intel. | 深度学习连提取冷冻电镜图蛋白质动力学信息都搞定了!
Nat. Mach. Intel. | 深度学习连提取冷冻电镜图蛋白质动力学信息都搞定了!
231 0
Nat. Mach. Intel. | 深度学习连提取冷冻电镜图蛋白质动力学信息都搞定了!
|
28天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
118 5
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
92 16
|
20天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
78 19
|
20天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
72 7