OushuDB 体验新执行器

简介: 本章节通过TPCH lineitem 表来展示新执行器的使用。

image.png

本章节通过TPCH lineitem 表来展示新执行器的使用。

建立e_lineitem外部表用来生成TPCH lineitem 数据:

CREATE EXTERNAL WEB TABLE E_LINEITEM ( L_ORDERKEY    INT8 ,L_PARTKEY     INTEGER ,L_SUPPKEY     INTEGER ,L_LINENUMBER  INTEGER ,L_QUANTITY    FLOAT ,L_EXTENDEDPRICE  FLOAT ,L_DISCOUNT    FLOAT ,L_TAX         FLOAT ,L_RETURNFLAG  VARCHAR(1) ,L_LINESTATUS  VARCHAR(1) ,L_SHIPDATE    TEXT ,L_COMMITDATE  TEXT ,L_RECEIPTDATE TEXT ,L_SHIPINSTRUCT CHAR(25) ,L_SHIPMODE     VARCHAR(10) ,L_COMMENT      VARCHAR(44) )EXECUTE 'bash -c "$GPHOME/bin/dbgen -b $GPHOME/bin/dists.dss -T L -s 1 -N 6 -n $((GP_SEGMENT_ID + 1))"'on 6 format 'text' (delimiter '|');

创建ORC 表

CREATE TABLE lineitem(  L_ORDERKEY    INT8,L_PARTKEY     INTEGER,L_SUPPKEY     INTEGER,L_LINENUMBER  INTEGER,L_QUANTITY    FLOAT,L_EXTENDEDPRICE  FLOAT,L_DISCOUNT    FLOAT,L_TAX         FLOAT,L_RETURNFLAG  TEXT,L_LINESTATUS  TEXT,L_SHIPDATE    TEXT,L_COMMITDATE  TEXT,L_RECEIPTDATE TEXT,L_SHIPINSTRUCT TEXT,L_SHIPMODE     TEXT,L_COMMENT      TEXT)WITH (APPENDONLY = true, OIDS = FALSE, ORIENTATION = orc);

插入数据

INSERT INTO lineitem SELECT * FROM e_lineitem;

从下面的例子可以看到新执行器对于性能的大幅改进。

-----获取表行数------postgres=# set new_executor = on;SETpostgres=# SELECT COUNT(*) FROM lineitem;count---------6001215(1 row)Time: 17.006 mspostgres=# set new_executor = off;SETpostgres=# SELECT COUNT(*) FROM lineitem;count---------6001215(1 row)Time: 213.248 ms-----TPCH 查询 1 ------postgres=# set new_executor = on;SETpostgres=#  SELECTl_returnflag,l_linestatus,sum(l_quantity)::bigint as sum_qty,sum(l_extendedprice)::bigint as sum_base_price,sum(l_extendedprice * (1 - l_discount))::bigint as sum_disc_price,sum(l_extendedprice * (1 - l_discount) * (1 + l_tax))::bigint as sum_charge,avg(l_quantity)::bigint as avg_qty,avg(l_extendedprice)::bigint as avg_price,avg(l_discount)::bigint as avg_disc,count(*) as count_orderFROMlineitemWHEREl_shipdate <= '1998-08-20'GROUP BYl_returnflag,l_linestatus;l_returnflag | l_linestatus | sum_qty  | sum_base_price | sum_disc_price |  sum_charge  | avg_qty | avg_price | avg_disc | count_order--------------+--------------+----------+----------------+----------------+--------------+---------+-----------+----------+-------------R            | F            | 37719753 |    56568041381 |    53741292685 |  55889619120 |      26 |     38251 |        0 |     1478870N            | F            |   991417 |     1487504710 |     1413082168 |   1469649223 |      26 |     38284 |        0 |       38854A            | F            | 37734107 |    56586554401 |    53758257135 |  55909065223 |      26 |     38273 |        0 |     1478493N            | O            | 73808911 |   110700990251 |   105167436999 | 109377979031 |      26 |     38248 |        0 |     2894278(4 rows)Time: 234.376 mspostgres=# set new_executor = off;SETpostgres=#  SELECTl_returnflag,l_linestatus,sum(l_quantity)::bigint as sum_qty,sum(l_extendedprice)::bigint as sum_base_price,sum(l_extendedprice * (1 - l_discount))::bigint as sum_disc_price,sum(l_extendedprice * (1 - l_discount) * (1 + l_tax))::bigint as sum_charge,avg(l_quantity)::bigint as avg_qty,avg(l_extendedprice)::bigint as avg_price,avg(l_discount)::bigint as avg_disc,count(*) as count_orderFROMlineitemWHEREl_shipdate <= '1998-08-20'GROUP BYl_returnflag,l_linestatus;l_returnflag | l_linestatus | sum_qty  | sum_base_price | sum_disc_price |  sum_charge  | avg_qty | avg_price | avg_disc | count_order--------------+--------------+----------+----------------+----------------+--------------+---------+-----------+----------+-------------R            | F            | 37719753 |    56568041381 |    53741292685 |  55889619120 |      26 |     38251 |        0 |     1478870N            | F            |   991417 |     1487504710 |     1413082168 |   1469649223 |      26 |     38284 |        0 |       38854A            | F            | 37734107 |    56586554401 |    53758257135 |  55909065223 |      26 |     38273 |        0 |     1478493N            | O            | 73808911 |   110700990251 |   105167436999 | 109377979031 |      26 |     38248 |        0 |     2894278(4 rows)Time: 2341.147 ms
目录
相关文章
|
关系型数据库 MySQL
Loading class `com.mysql.jdbc.Driver‘. This is deprecated. The new driver class
Loading class `com.mysql.jdbc.Driver‘. This is deprecated. The new driver class
507 0
|
移动开发 Unix Linux
30天拿下Python之os模块
30天拿下Python之os模块
162 0
|
机器学习/深度学习 人工智能 算法
无需人工标注,自生成指令框架打破ChatGPT等LLM的成本瓶颈
无需人工标注,自生成指令框架打破ChatGPT等LLM的成本瓶颈
300 0
无需人工标注,自生成指令框架打破ChatGPT等LLM的成本瓶颈
|
JSON 数据可视化 JavaScript
pyecharts包的简单使用
第三方包使用
387 0
|
存储 网络协议 芯片
清晰讲解LSB、MSB和大小端模式及网络字节序
清晰讲解LSB、MSB和大小端模式及网络字节序
3010 0
|
Java 容器 Spring
SpringBoot源码学习(二) 初始化环境,创建容器,初始化Failure Analyzers
## 前言 + 第一篇文章我们大概了解了springboot启动的时候主要做了这么几件事 + new了一个SpringApplication实例 + 判断当前spring运行的环境 + 加载META-INF/spring.factories 并初始化监听器 + SpringApplications实例.run + 获取并启动监听器 + 实例化Even
405 0
SpringBoot源码学习(二) 初始化环境,创建容器,初始化Failure Analyzers
|
监控 负载均衡 Dubbo
认识微服务 SpringCloud (史上最全学习路线)
认识微服务 SpringCloud (史上最全学习路线)
4918 0
认识微服务 SpringCloud (史上最全学习路线)
|
机器学习/深度学习 算法 语音技术
智能语音风扇解决方案让你动动嘴就能拥有一个凉爽的夏季
语音识别功能只需要说话就可以打开风扇,调节风速大小、选择风扇模式等,不需去按也不需遥控器,不用挪窝,简直懒人福音。彻底解放了你的双手,语音识别功能给我们带来了很大的便利,更加智能化。
智能语音风扇解决方案让你动动嘴就能拥有一个凉爽的夏季
|
Java 测试技术 调度
压测软件Jmeter使用实例(WIN7环境)
百科 Apache JMeter是Apache组织开发的基于Java的压力测试工具。用于对软件做压力测试,它最初被设计用于Web应用测试,但后来扩展到其他测试领域。
1742 0