攻坚AI病理诊断,阿里云天池联合英特尔重磅发布《数字病理诊断排行榜》

简介: 在现代计算系统和人工智能技术加持下,传统病理学正转向数字化病理,AI 技术的加持极大解放了病理医疗资源,AI 病理未来规模可达数百亿人民币。在此背景下,阿里云天池联合英特尔举办了「数字视觉」挑战赛,以赛事推动 AI 技术在产业中落地。同时举办了「2020 阿里云天池数字病理视觉挑战赛和研讨会」。众多来自第三方病理诊断中心、学术界、产业界的数字病理行业专家出席了研讨。在历时 3 个月的前期调研以及后期业内嘉宾充分讨论后,研讨会重磅发布了《数字病理诊断排行榜》,评选出了数字病理行业产业链各个环节的 Top 级企业。


微信图片_20211203185905.jpg


病理学被「现代医学之父」威廉 · 奥斯勒称为「医学之本」,其核心方法病理切片分析被医学界公认为癌症诊断的「金标准」。而实际医疗资源的短缺窘境极大程度地限制了病理诊断产业的发展。在我国,目前每个病理医生都超H荷地承担了 5-10 倍的常规工作量,误诊、漏诊在所难免。


随着现代计算系统和人工智能技术的引入,病理诊断正逐步升级为数字病理诊断,这项新技术不仅能够以迅速、标准化的方式处理医学影像,还能对可疑影像进行勾画、渲染,并以结构化的语言提出建议,在医院的诊断、数据储存和共享、科研、会议、教学,以及第三方诊断机构的病理会诊中逐渐崭露头角,潜力巨大。


可以说,数字病理产业已经成为解放更多医疗资源的关键突破口,被人工智能技术加持后的数字病理解决方案也将成为「医生的医生」。


6 月 12-13 日,由英特尔联合阿里云天池发起,机器之心支持,结合动脉网数据库中的病理企业绘制《数字病理诊断排行榜》在数字病理研讨会期间正式发布。报告历经企业调研、评估模型设定、专家打分、企业信息复核 4 个阶段,耗时 3 个月得以成型,针对病理产业链不同环节的重点企业数字化转型成果进行了详实分析和观点呈现。


关注「机器之心」,后台聊天对话框回复「数字病理」,获得39页完整报告。


一、精准对接行业痛点,阿里云天池「数字视觉」人体挑战赛落幕


数字病理发展尚处于早期阶段,AI 技术落地病理行业的实践过程中还有一些难点,比如 AI 技术研发与应用存在鸿沟、终端产品需求不明确等。


为加速技术在行业中的落地,阿里云天池联合英特尔发起了「数字人体」视觉挑战赛,宫颈癌风险智能诊断总决赛于 6 月 12 日落幕。


微信图片_20211203181053.jpg

阿里云天池「数字人体」视觉挑战赛决赛落幕



来自细胞检测分类算法赛道和 VNNI 赛道的 20 支队伍通过十几分钟的答辩闯决出了胜负。deep-thinker 团队和 LLLLC 团队分别获得了算法赛道和 VNNI 赛道的冠军。


此次大赛以宫颈癌为切入口,旨在通过提供大规模经过专业医师标注的宫颈癌液基薄层细胞检测数据,让选手能够提出并综合运用目标检测、深度学习等方法对宫颈癌细胞学异常鳞状上皮细胞进行定位以及对宫颈癌细胞学图片分类,提高模型检测的速度和精度,辅助医生进行诊断。


选手采用模型量化的方法后单张 ROI 区域细胞检测仅需要 0.1s;选手比赛中所沉淀的算法可以嵌入到市面上常用的宫颈癌细胞学数字扫描设备中;预计节约医生 10~20 分钟的阅片时间。


英特尔是此次大赛联合主办方,其开创英特尔 ® 深度学习加速技术(VNNI 指令集)用于比赛中极大提升了本次比赛推断效率,将病理筛查的判断时间从 5s 降到 0.1s。


大赛的后一天,阿里云天池联合英特尔举办的「2020 阿里云天池数字病理研讨会」也完美落幕。中国科学院计算技术研究所研究员周少华、浙江大学健康医疗大数据国家研究员副院长吴健、迪英加 CEO 杨林、商汤科技智慧健康病理产品负责人黄晓迪、深思考创始人兼 CEO 杨志明等来自产业学术端、技术端、应用端等不同领域的专家出席了研讨。


微信图片_20211203181613.jpg

数字病理研讨会现场


这些专家就目前 AI 技术落地病理行业的痛点、下游场景需求点、AI 病理未来趋势等问题进行了交流和观点碰撞。


二、数字病理三大平台 Top 格局


研讨会最后,在经过专家的充分论证和长达 3 个月的前期调研基础上,英特尔联合阿里云,结合动脉网数据库的病理企业绘制,重磅发布了《数字病理诊断排行榜》。


榜单评选出了病理行业上游(全切片成像系统与设备)、中游(辅助病理诊断)、下游(第三方病理中心)Top 企业榜单,并对其数字化转型成果进行了详实分析和观点呈现。


在病理行业数字化转型的大背景下,这批正在转型中的病理企业代表着行业未来走向,榜单的发布很大程度上为传统病理企业提供了权威的数字化转型借鉴。


凭借全面、公平、专业的原则,英特尔和阿里云历时 3 个月进行了大量的前期调研,包括企业调研、评估模型设定、专家打分、企业信息复核等多个步骤。


具体而言,选择出 33 家全切片成像系统与设备企业、25 家辅助病理诊断企业、19 家第三方第三方病理中心作为备选企业,邀请了 10 位高校教授、5 位医疗机构病理科主任和 5 位投资机构作为评选专家以保证专业性。


评选过程中,专家通过网络问卷、电话问卷和深度访谈三个环节,调研企业的产品结构、产品销售、数字化投入、IT 架构和数据业务的影响深度,最后将指标量化,甄选出产品矩阵、数字化投入、IT 架构、业务影响深度 4 个指标,对企业进行综合评分。


微信图片_20211203184112.jpg


  • 产品矩阵:数字化转型将推动产品迭代,榜单选择产品数量(具备医疗器械注册证)、销售收入、在研管线作为衡量产品矩阵的二级指标;


  • 数字化投入:企业数字化转型投入会经历由 “实” 向“虚”的转变,基于数字化投入力度和方向来评估转型程度,本次榜单选择设备购置、人员配置作为衡量数字化投入的二级指标;


  • IT 架构:企业 IT 架构类型可作为评判企业数字化转型阶段的杠杆,榜单通过企业采用传统 IT 架构、云架构、混合云到混合云中台架构的变迁作为衡量 IT 架构的评分标准;


  • 业务影响深度:数据会从战术层面到战略层面贯穿整个产品周期,榜单选择用户画像维度、服务供给、数据决策、实验创新作为衡量业务影响深度的二级指标。


以下是榜单具体情况:


1)全切片成像系统与设备 Top10


微信图片_20211203185847.jpg


全切片成像系统与设备位于产业链的最上游,为病理检测提供前处理仪器、试剂、耗材。


Top10 企业有两家来自德国和日本的老牌外企,其余都是中国本土企业,规模不一,既有上市公司,又有融资尚处于 A 轮的企业,但都做出了一定成绩,其中江丰生物曾获得英特尔数亿金额都投资青睐。


为病理企业提供检测设备,这个环节也是病理信息化转型过程中的「新基建」。


无论是病理 AI 的商业化还是信息化产品,「病理科信息化不足」都是一个绕不开的问题,许多医院甚至还在使用物理玻片的方式进行收集和存储。


目前病理科信息化有两种方式,一是对传统设备的中间环节赋能,例如腾讯此前发布的智能显微镜,在诊断中加入 AI 识别,做部分场景优化。但玻片依然是物理形式,最后储蓄在玻片柜中,除了在诊断环节进行辅助以外,无法做到数据价值的进一步挖掘。


此次上榜企业不少都采用了创新性的方式,对病理数据的源头进行数字化改革。


例如,江丰生物的数字病理扫描系统,直接将采集的样本转化为数字形式,后续所有流程都实现信息化、线上化,其中也包括 AI 产品的诊断识别;帝麦克斯将切片全数字化后、通过图像管理系统进行保存、浏览、分析、上传至远程诊断平台,可进行实时远程病理会诊


2)辅助病理诊断 Top5


微信图片_20211203185850.jpg


辅助病理诊断处于 AI 病理诊断的中游,提供完整的病理诊断系统。上榜的 Top5 均为国内创新企业,成立时间较晚但实力强劲。


辅助病理诊断需要将 AI 与实际病理诊断场景深度结合,考验技术落地能力。以上 5 家企业不仅研发能力强,而且产品均已经在国内外大量企业中实现临床应用,并获得客户认可。


其中 Top1 兰丁医学落地实力强,从宫颈癌这一单一癌种切入,提供人工智能筛查系统,2019 年营收超过 1 亿元。

迪英加已经和国内外超过 50 家以上的三甲医院建立了深度合作,产品已经在美国得到了比较广泛的应用,美国现有客户已经达到几十家。


透彻影像是目前业内已知的准确率和效率最高的胃部疾病深度学习辅助诊断系统,同样与中国人民解放军总医院、中国医学科学院肿瘤医院、北京协和医院等多家医院达成了合作。


3)第三方病理中心 Top3

微信图片_20211203185853.jpg


第三方病理中心是 AI 病理诊断的下游应用市场。上榜企业分别为精准诊断服务商弘泰嘉业、第三方病理检验机构华银健康和首家首家获得独立第三方病理诊断中心牌照的病理诊断中心衡道医学。


其中弘泰嘉业已经深耕产业十几年,利用互联网 +、数字化病理技术应用和 O2O 模式,自主研发软件平台,先后全资建立了第三方独立医学检验所和 H-T 精准诊断云平台。诊断效率极高,从提交会诊申请到诊断报告返回,全程不超过 24 小时,加急不超过 4 小时。


华银健康由南方医科大学及广州华银共同组建,围绕病理诊断、教学、科研与临床转化的国内大型临床病理诊断中心,实验室已通过美国 CAP 质量认证专家评审。截止目前,该集团临床服务覆盖全国 27 个省区超过 2000 家医院,拥有五个省级实验室,年诊断标本量超过 850 万例。


衡道医学座落于上海市的核心病理诊断中心,占地 3200 平米,为目前我国境内单体最大的病理诊断机构,以 “全职医技团队 + 一线会诊专家 + 共建联合平台” 多层级模式,依托「数字远程会诊网络 + 实体中心 & 物流支持」,为基层医院提供的病理会诊及诊断支持,专注解决术中冰冻、疑难会诊、各类特色穿刺活检和小标本快速诊断。


以上企业均已经构建了人工智能基础设施,将 AI 和数字化融合到病理中心的全流程运用中。


并且,大都采用院内院外相结合的商业模式,不仅为医疗机构提供全方位病理平台建设服务,还联合国内外专家为多级医院提供远程病理诊断。


三、数字病理行业现状总结


经过大量调研后,榜单针对行业现状总结出如下核心观点:


1)当前一些数字病理技术只改变了病理切片载体,对于提高效率助益并不显著,需要全流程数字化改造。


2)病理中心数字化转型涉及到从设备到运营全方面的数字化,其中基于云计算的远程会诊可以极大提升基层病理诊断能力。


3)通过院内院外协同的方式,第三方医检所可以联合大量基层医疗机构,激发巨大的市场空间。国产全切片数字病理设备话语权正不断提高。


4)人工智能在病理诊断中的应用尚处于发展,数据是核心资源也是最需攻坚的难点,海量标准化数据积累下的算法精进将极大提升病理诊断利用效率。


4)独立病理诊断中心正在向上游追溯,不断优化数据处理和分析能力,这将极大分流院内病理诊断压力。

相关文章
|
8天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
50 2
|
12天前
|
存储 人工智能 数据可视化
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
|
8天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
|
8天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
2天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用及其未来趋势
【10月更文挑战第34天】随着人工智能技术的飞速发展,其在医疗领域的应用也日益广泛。本文将探讨AI技术在医疗诊断中的具体应用案例,分析其对提升诊断效率和准确性的积极影响,并预测未来AI在医疗诊断中的发展趋势。通过实际代码示例,我们将深入了解AI如何帮助医生进行更精准的诊断。
|
3天前
|
机器学习/深度学习 人工智能 算法
AI在医疗影像诊断中的应用与未来展望####
本文深入探讨了人工智能(AI)在医疗影像诊断领域的最新进展、当前应用实例及面临的挑战,并展望了其未来的发展趋势。随着深度学习技术的不断成熟,AI正逐步成为辅助医生进行疾病早期筛查、诊断和治疗规划的重要工具。本文旨在为读者提供一个全面的视角,了解AI如何在提高医疗效率、降低成本和改善患者预后方面发挥关键作用。 ####
|
1天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗影像诊断中的应用
探索AI在医疗影像诊断中的应用
|
3天前
|
人工智能 架构师
活动火热报名中|阿里云&Elastic:AI Search Tech Day
2024年11月22日,阿里云与Elastic联合举办“AI Search Tech Day”技术思享会活动。
|
3天前
|
存储 人工智能 大数据
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
10天前
|
存储 人工智能 弹性计算
对话阿里云吴结生:AI时代,云上高性能计算的创新发展
在阿里云智能集团副总裁,弹性计算产品线负责人、存储产品线负责人 吴结生看来,如今已经有很多行业应用了高性能计算,且高性能计算的负载正呈现出多样化发展的趋势,“当下,很多基础模型的预训练、自动驾驶、生命科学,以及工业制造、半导体芯片等行业和领域都应用了高性能计算。”吴结生指出。

热门文章

最新文章

下一篇
无影云桌面