用Python的 __slots__ 节省9G内存

简介: 我们曾经提到,Oyster.com的Python web服务器怎样利用一个巨大的Python dicts(hash table),缓存大量的静态资源。我们最近在Image类中,用仅仅一行 slots 代码,让每个6G内存占用的服务进程(共4个),省出超过2G来。

我们曾经提到,Oyster.com的Python web服务器怎样利用一个巨大的Python dicts(hash table),缓存大量的静态资源。我们最近在Image类中,用仅仅一行 slots 代码,让每个6G内存占用的服务进程(共4个),省出超过2G来。

这是其中一个服务器在部署代码前后的截图:

image.png

physical-memory-usage-history

我们alloc了大约一百万个类似如下class的实例:

classImage(object):

   def__init__(self, id, caption, url):

       self.id = id

       self.caption = caption

       self.url = url

       self._setup()

   # ... other methods ...

默认情况下,Python用一个dict来存储对象实例的属性。这在一般情况下还不错,而且非常灵活,乃至你在运行时可以随意设置新的属性。


但是,对一些在”编译”前就知道该有几个固定属性的小class来说,这个dict就有点浪费内存了。而当你把这个小浪费乘上一百万,那可就大不同了。在Python中,你可以在class中设置slots,它是一个包含这些固定的属性名的list。这样Python就不会再使用dict,而且只分配这些属性的空间。

classImage(object):

   __slots__ = ['id', 'caption', 'url']

   def__init__(self, id, caption, url):

       self.id = id

       self.caption = caption

       self.url = url

       self._setup()

   # ... other methods ...

你还可以用collections.namedtuple,它允许访问参数,但只占用一个tuple的空间。这跟slots类似。不过我总觉得继承一个namedtuple类很奇怪。另外,如果你需要自定义初始化,你应该重载new而不是init


警告:不要贸然进行这个优化,把它用在所有地方。这种做法不利于代码维护,而且只有当你有数以千计的实例的时候才会有明显效果。


译注:作者在评论中关于”不利于代码维护“的说法:

webreac:我觉得slots关键字不只是速度优化(注:这里应该是内存优化),也是类字段名的一个可靠”文档“。这有利于代码维护。为什么你觉得它不好?


Ben Hoyt(作者):有趣的说法——我不确定应不应该把slots作为文档。不过的确是不错的注意。我之前这么说的原因是,你需要对字段名”定义“两次(不够DRY)。namedtuple也类似。

相关文章
|
5月前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
316 2
|
6月前
|
传感器 数据采集 监控
Python生成器与迭代器:从内存优化到协程调度的深度实践
简介:本文深入解析Python迭代器与生成器的原理及应用,涵盖内存优化技巧、底层协议实现、生成器通信机制及异步编程场景。通过实例讲解如何高效处理大文件、构建数据流水线,并对比不同迭代方式的性能特点,助你编写低内存、高效率的Python代码。
281 0
|
9月前
|
数据可视化 Linux iOS开发
Python测量CPU和内存使用率
这些示例帮助您了解如何在Python中测量CPU和内存使用率。根据需要,可以进一步完善这些示例,例如可视化结果或限制程序在特定范围内的资源占用。
373 22
|
12月前
|
监控 Java 计算机视觉
Python图像处理中的内存泄漏问题:原因、检测与解决方案
在Python图像处理中,内存泄漏是常见问题,尤其在处理大图像时。本文探讨了内存泄漏的原因(如大图像数据、循环引用、外部库使用等),并介绍了检测工具(如memory_profiler、objgraph、tracemalloc)和解决方法(如显式释放资源、避免循环引用、选择良好内存管理的库)。通过具体代码示例,帮助开发者有效应对内存泄漏挑战。
618 1
|
缓存 监控 算法
Python内存管理:掌握对象的生命周期与垃圾回收机制####
本文深入探讨了Python中的内存管理机制,特别是对象的生命周期和垃圾回收过程。通过理解引用计数、标记-清除及分代收集等核心概念,帮助开发者优化程序性能,避免内存泄漏。 ####
366 3
|
算法 Java 程序员
Python内存管理机制深度剖析####
本文将深入浅出地探讨Python中的内存管理机制,特别是其核心组件——垃圾收集器(Garbage Collector, GC)的工作原理。不同于传统的摘要概述,我们将通过一个虚拟的故事线,跟随“内存块”小M的一生,从诞生、使用到最终被回收的过程,来揭示Python是如何处理对象生命周期,确保高效利用系统资源的。 ####
163 1
|
安全 开发者 Python
Python的内存管理pymalloc
Python的内存管理pymalloc
172 1
|
安全 开发者 Python
Python的内存管理pymalloc
Python的内存管理pymalloc
|
监控 Java API
Python是如何实现内存管理的
Python是如何实现内存管理的
229 1
|
数据处理 Python
如何优化Python读取大文件的内存占用与性能
如何优化Python读取大文件的内存占用与性能
1058 0

推荐镜像

更多