基于大数据开发套件的增量同步策略

简介: 因为近期遇到用户在做ETL操作导入数据到MaxCompute的时候,对如何设置数据同步策略有疑惑,所以今天第一波我们来聊一下数据的同步策略,根据数据的特性,看看哪些数据适合增量同步,哪些适合全量同步,又是如何实现的?请认真看完下面的介绍,这些问题都不是事儿。

今天我们来讨论如何使用大数据开发套件进行增量同步。

我们把需要同步的数据,根据数据写入后是否会发生变化,分为会变化的数据(人员表比如说,人员的状态会发生变化)和不会发生变化的数据(一般是日志数据)。针对这两种场景,我们需要设计不同的同步策略。这里以把业务RDS数据库的数据同步到MaxCompute为例做一些说明,其他的数据源的道理是一样的。根据等幂性原则(也就是说一个任务,多次运行的结果是一样的,这样才能支持重跑调度。如果任务出现错误,也比较容易清理脏数据),我每次导入数据都是导入到一张单独的表/分区里,或者覆盖里面的历史记录。

本文的测试时间是2016-11-14,全量同步是在14号做的,同步历史数据到ds=20161113这个分区里。至于本文涉及的增量同步的场景,配置了自动调度,把增量数据在15号凌晨同步到ds=20161114的分区里。数据里有一个时间字段optime,用来表示这条数据的修改时间,从而判断这条数据是否是增量数据。

不变的数据

对应这种场景,因为数据生成后就不会发生变化,我们可以很方便地根据数据的生成规律进行分区,比较常见的是根据日期进行分区,比如每天一个分区。以下是测试数据:

drop table if exists oplog;
create table if not exists oplog(
 optime DATETIME,
 uname varchar(50),
 action varchar(50),
 status varchar(10)
 );

Insert into oplog values(str_to_date('2016-11-11','%Y-%m-%m'),'LiLei','SELECT','SUCCESS');
Insert into oplog values(str_to_date('2016-11-12','%Y-%m-%m'),'HanMM','DESC','SUCCESS');

这里有2条数据,当成历史数据。我先做一次全量数据同步,到昨天的分区里。配置方法如下:
先在MaxCompute创建好表:

--创建好MaxCompute表,按天进行分区
create table if not exists ods_oplog(
 optime datetime,
 uname string,
 action string,
 status string
) partitioned by (ds string);

然后配置了历史数据数据同步:
screenshot

因为只需要跑一次,做以下测试就可以了。测试后到数据开发里把任务的状态改成暂停(最右边的调度配置了)并重新发布,免得明天他继续跑了。之后到MaxCompute里看一下结果:
screenshot
测试通过后。往Mysql里多写一些数据作为增量数据:

 insert into oplog values(CURRENT_DATE,'Jim','Update','SUCCESS');
 insert into oplog values(CURRENT_DATE,'Kate','Delete','Failed'); 
 insert into oplog values(CURRENT_DATE,'Lily','Drop','Failed'); 

然后配置同步任务如下。需要特别注意的是数据过滤这的配置,通过这个配置,可以在15号的凌晨的同步的时候,把14号全天新增的数据查询出来,然后同步到增量分区里。
screenshot
这个任务需要发布,设置调度周期为每天调度,第二天过来一看,MaxCompute里的数据变成了:
screenshot

会变的数据

如人员表、订单表一类的会发生变化的数据,根据数据仓库的4个特点里的反映历史变化的这个特点的要求,我们建议每天对数据进行全量同步。也就是说每天保存的都是数据的全量数据,这样历史的数据和当前的数据都可以很方便地获得。不过如果真实的场景下因为某些特殊情况,需要每天也只做增量同步,因为MaxCompute不支持Update语句来修改数据,只能用别的一些方法来实现。两种同步策略的具体方法如下:

首先我们需要造一些数据:

drop table if exists user ;
create table if not exists user(
    uid int,
    uname varchar(50),
    deptno int,
    gender VARCHAR(1),
    optime DATETIME
    );
--历史数据
insert into user values (1,'LiLei',100,'M',str_to_date('2016-11-13','%Y-%m-%d'));
insert into user values (2,'HanMM',null,'F',str_to_date('2016-11-13','%Y-%m-%d'));
insert into user values (3,'Jim',102,'M',str_to_date('2016-11-12','%Y-%m-%d'));
insert into user values (4,'Kate',103,'F',str_to_date('2016-11-12','%Y-%m-%d'));
insert into user values (5,'Lily',104,'F',str_to_date('2016-11-11','%Y-%m-%d'));
--增量数据
update user set deptno=101,optime=CURRENT_TIME  where uid = 2; --null改成非null
update user set deptno=104,optime=CURRENT_TIME  where uid = 3; --非null改成非null
update user set deptno=null,optime=CURRENT_TIME  where uid = 4; --非null改成null
delete from user where uid = 5;
insert into user(uid,uname,deptno,gender,optime) values (6,'Lucy',105,'F',CURRENT_TIME);

每天全量同步

每天全量同步同步比较简单:

--全量同步
create table ods_user_full(
    uid bigint,
    uname string,
    deptno bigint,
    gender string,
    optime DATETIME 
) partitioned by (ds string);

然后配置同步为:
screenshot
测试后结果为
screenshot
因为每天都是全量同步,没有全量和增量的区别,所以第二天就能看到数据结果为
screenshot
如果需要查询的话,就用where ds =‘20161114’ 来取全量数据即可了。

每天增量

非常不推荐用这种方法,只有在极特殊的场景下才考虑。首先这种场景不支持delete语句,因为被删除的数据无法通过SQL语句的过滤条件查到。当然实际上公司里的代码很少直接有直接删除数据的,都是使用逻辑删除,那delete就转化成update来处理了。但是这里毕竟限制了一些特殊的业务场景不能做了,当出现特殊情况可能导致数据不一致。另外还有一个缺点就是同步后要对新增的数据和历史数据做合并。具体的做法如下:
首先需要创建2张表,一张写当前的最新数据,一张写增量数据:

--结果表
create table dw_user_inc(
    uid bigint,
    uname string,
    deptno bigint,
    gender string,
    optime DATETIME 
);
--增量记录表
create table ods_user_inc(
    uid bigint,
    uname string,
    deptno bigint,
    gender string,
    optime DATETIME 
)

然后全量数据可以直接写入结果表:
screenshot
结果如下:
screenshot
这个只要跑一次的,记得跑好后要暂停掉。
然后把增量数据写入到增量表里:
screenshot
结果如下
screenshot
然后做一次合并

insert overwrite table dw_user_inc 
select 
--所有select操作,如果ODS表有数据,说明发生了变动,以ODS表为准
case when b.uid is not null then b.uid else a.uid end as uid,
case when b.uid is not null then b.uname else a.uname end as uname,
case when b.uid is not null then b.deptno else a.deptno end as deptno,
case when b.uid is not null then b.gender else a.gender end as gender,
case when b.uid is not null then b.optime else a.optime end as optime
from 
dw_user_inc a 
full outer join ods_user_inc b
on a.uid  = b.uid ;

最终结果是:
screenshot
可以看到,delete的那条记录没有同步成功。

对比以上两种同步方式,可以很清楚看到两种同步方法的区别和优劣。第二种方法的优点是同步的增量数据量比较小,但是带来的缺点有可能有数据不一致的风险,而且还需要用额外的计算进行数据合并。如无必要,会变化的数据就使用方法一即可。如果对历史数据希望只保留一定的时间,超出时间的做自动删除,可以设置Lifecycle。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
4月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
177 0
|
5月前
|
存储 分布式计算 Java
Java 大视界 -- Java 大数据在智能建筑能耗监测与节能策略制定中的应用(182)
本文探讨了Java大数据技术在智能建筑能耗监测与节能策略制定中的关键应用。通过Hadoop、Spark等技术实现能耗数据的存储、分析与可视化,结合实际案例,展示了Java大数据如何助力建筑行业实现节能减排目标。
|
3月前
|
大数据 数据挖掘 定位技术
买房不是拍脑袋:大数据教你优化房地产投资策略
买房不是拍脑袋:大数据教你优化房地产投资策略
160 2
|
4月前
|
机器学习/深度学习 搜索推荐 数据可视化
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。
|
5月前
|
存储 Java 大数据
Java 大视界 -- Java 大数据在智能家居能源消耗模式分析与节能策略制定中的应用(198)
简介:本文探讨Java大数据技术在智能家居能源消耗分析与节能策略中的应用。通过数据采集、存储与智能分析,构建能耗模型,挖掘用电模式,制定设备调度策略,实现节能目标。结合实际案例,展示Java大数据在智能家居节能中的关键作用。
|
5月前
|
存储 数据采集 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵溯源与治理策略展示中的应用(191)
本项目探索了基于Java的大数据可视化技术在城市交通拥堵溯源与治理策略中的应用。通过整合多源交通数据,利用Java生态中的大数据处理与可视化工具,构建了交通拥堵分析模型,并实现了拥堵成因的直观展示与治理效果的可视化评估。该方案为城市交通管理提供了科学、高效的决策支持,助力智慧城市建设。
|
6月前
|
机器学习/深度学习 分布式计算 供应链
Java 大视界 ——Java 大数据在智能供应链库存优化与成本控制中的应用策略(172)
本文围绕 Java 大数据在智能供应链库存优化与成本控制中的应用展开,剖析库存管理现状与挑战,阐述大数据技术应用策略,结合真实案例与代码给出实操方案,助力企业提升库存管理效能,降低运营成本。
|
8月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
10月前
|
人工智能 DataWorks 大数据
大数据AI一体化开发再加速:DataWorks 支持GPU类型资源
大数据开发治理平台 DataWorks 的Serverless资源组支持GPU资源类型,以免运维、按需付费、弹性伸缩的Serverless架构,将大数据处理与AI开发能力无缝融合。面向大数据&AI协同开发场景,DataWorks提供了交互式开发和分析工具Notebook。开发者在创建个人开发环境时,可以选择GPU类型的资源作为Notebook运行环境,以支持进行高性能的计算工作。本教程将基于开源多模态大模型Qwen2-VL-2B-Instruct,介绍如何使用 DataWorks Notebook及LLaMA Factory训练框架完成文旅领域大模型的构建。
673 24
|
11月前
|
数据采集 机器学习/深度学习 DataWorks
DataWorks产品评测:大数据开发治理的深度体验
DataWorks产品评测:大数据开发治理的深度体验
489 1