Interview:算法岗位面试—10.12上午—上海某科技公司图像算法岗位(偏图像算法,互联网AI行业)技术面试考点之LoR逻辑回归的底层代码实现、特征图计算公式

简介: Interview:算法岗位面试—10.12上午—上海某科技公司图像算法岗位(偏图像算法,互联网AI行业)技术面试考点之LoR逻辑回归的底层代码实现、特征图计算公式

其实,考察的知识点,博主都做过,但是,emmm,这些知识点,在我写代码中,几乎不会用到,so,会遗忘。所以,还需要下功夫,去多回忆回忆啦。

     此次面试过程中,直接手推了整个CNN的发展历史,写满了整个黑板,还分开了单步骤、多步骤经典架构及其它们之间的关系。但是,面我的技术貌似没怎么理解,好像很不屑,此次面试,给我的整个感觉不太舒服。还包括,他才开始让我手推LoR模型,但是我说,我想采用数学公式推导,推导出来以后,说看不懂我写的数学公式,其实,LoR符合伯努利分布,可以数MLE化,取个log损失再平均,接着对系数进行求偏导。what?面试官竟然没看懂数学的推导,我讲解了一遍,并说出了为什么采用log损失,但是,他让我用Tensorfow写出该公式,这时候,我就感觉,这个面试官,emmmm。

     还有个细节,在即将结束的时候,他应该让HR进来和我聊,但该面试官离开面试房间之前,要求让我把手推的CNN知识点—整个黑板,都全部擦掉。其实是可以在我最后离开面试房间的时候擦掉的,但是写完就让我擦掉,真是搞不懂该面试官的逻辑……

      补充一句,让进入下一轮技术面的郑HR,感觉很nice,虽然没见过其人(可能在复旦叶耀珍楼面试中有见到过),但是通过短信或者邮件联系过程中,感觉该HR非常舒服哒。


知识点考察


1、特征图计算公式


往期文章:DL之CNN:卷积神经网络算法简介之原理简介(步幅/填充/特征图)、七大层级结构(动态图详解卷积/池化+方块法理解卷积运算)、CNN各层的作用等之详细攻略

https://yunyaniu.blog.csdn.net/article/details/79640111#2、Stride%20%28步幅%29和Padding%20%28填充%29


2、RetinaNet的focal loss损失函数意义


往期文章:DL之RetinaNet:RetinaNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

https://yunyaniu.blog.csdn.net/article/details/90648965


手撕代码


1、机器学习岗位技术面试考点之LoR逻辑回归的底层代码实现


思维导图

image.png



代码实现

ML之LoR:利用LoR算法(tensorflow)对mnist数据集实现手写数字识别

https://yunyaniu.blog.csdn.net/article/details/78991537#3、ML之LoR:利用LoR算法%28tensorflow%29对mnist数据集实现手写数字识别


相关文章
|
3月前
|
传感器 人工智能 监控
智慧工地 AI 算法方案
智慧工地AI算法方案通过集成多种AI算法,实现对工地现场的全方位安全监控、精准质量检测和智能进度管理。该方案涵盖平台层、展现层与应用层、基础层,利用AI技术提升工地管理的效率和安全性,减少人工巡检成本,提高施工质量和进度管理的准确性。方案具备算法精准高效、系统集成度高、可扩展性强和成本效益显著等优势,适用于人员安全管理、施工质量监控和施工进度管理等多个场景。
|
3月前
|
传感器 人工智能 监控
智慧电厂AI算法方案
智慧电厂AI算法方案通过深度学习和机器学习技术,实现设备故障预测、发电运行优化、安全监控和环保管理。方案涵盖平台层、展现层、应用层和基础层,具备精准诊断、智能优化、全方位监控等优势,助力电厂提升效率、降低成本、保障安全和环保合规。
智慧电厂AI算法方案
|
16天前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
54 13
|
2月前
|
机器学习/深度学习 人工智能 算法
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
Enhance-A-Video 是由上海人工智能实验室、新加坡国立大学和德克萨斯大学奥斯汀分校联合推出的视频生成质量增强算法,能够显著提升视频的对比度、清晰度和细节真实性。
105 8
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
|
22天前
|
机器学习/深度学习 存储 人工智能
淘天算法工程师玩转《黑神话》,多模态大模型如何成为天命AI
淘天集团未来生活实验室的算法工程师们以ARPG游戏《黑神话:悟空》为平台,探索多模态大模型(VLM)在仅需纯视觉输入和复杂动作输出场景中的能力边界。他们提出了一种名为VARP的新框架,该框架由动作规划系统和人类引导的轨迹系统组成,成功在90%的简单和中等难度战斗场景中取得胜利。研究展示了VLMs在传统上由强化学习主导的任务中的潜力,并提供了宝贵的人类操作数据集,为未来研究奠定了基础。
|
3月前
|
机器学习/深度学习 传感器 人工智能
智慧无人机AI算法方案
智慧无人机AI算法方案通过集成先进的AI技术和多传感器融合,实现了无人机的自主飞行、智能避障、高效数据处理及多机协同作业,显著提升了无人机在复杂环境下的作业能力和安全性。该方案广泛应用于航拍测绘、巡检监测、应急救援和物流配送等领域,能够有效降低人工成本,提高任务执行效率和数据处理速度。
112 2
智慧无人机AI算法方案
|
2月前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
87 3
|
2月前
|
机器学习/深度学习 人工智能 算法
【AI系统】内存分配算法
本文探讨了AI编译器前端优化中的内存分配问题,涵盖模型与硬件内存的发展、内存划分及其优化算法。文章首先分析了神经网络模型对NPU内存需求的增长趋势,随后详细介绍了静态与动态内存的概念及其实现方式,最后重点讨论了几种节省内存的算法,如空间换内存、计算换内存、模型压缩和内存复用等,旨在提高内存使用效率,减少碎片化,提升模型训练和推理的性能。
92 1
|
3月前
|
传感器 人工智能 监控
智慧化工厂AI算法方案
智慧化工厂AI算法方案针对化工行业生产过程中的安全风险、效率瓶颈、环保压力和数据管理不足等问题,通过深度学习、大数据分析等技术,实现生产过程的实时监控与优化、设备故障预测与维护、安全预警与应急响应、环保监测与治理优化,全面提升工厂的智能化水平和管理效能。
345 0
智慧化工厂AI算法方案
|
4月前
|
人工智能 算法 前端开发
无界批发零售定义及无界AI算法,打破传统壁垒,累积数据流量
“无界批发与零售”是一种结合了批发与零售的商业模式,通过后端逻辑、数据库设计和前端用户界面实现。该模式支持用户注册、登录、商品管理、订单处理、批发与零售功能,并根据用户行为计算信用等级,确保交易安全与高效。

热门文章

最新文章