【学习资料】第8期PostgreSQL 规格评估 - 微观、宏观、精准 多视角估算数据库性能(选型、做预算不求人)

本文涉及的产品
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
简介: 大家好 ,这里是PostgreSQL 规格评估 - 微观、宏观、精准 多视角估算数据库性能(选型、做预算不求人)

背景


在提预算时必不可少的环境是评估需要多少硬件。

通常会要求业务方提供一些数据,例如用户数、PV、UV等。但是这种评估纯靠经验,方法非常的粗糙也不准确。

那么到底如何评估需要多少硬件、或者说需要什么样规格的硬件来支撑你未来的业务呢?

对于PostgreSQL这个数据库产品来说,我介绍一下三种评估方法:

1、微观评估(相对来说比较准确)

2、宏观评估(对选型有帮助,对规格帮助不大,略显粗糙)

3、精准评估(最为准确,但是要求对业务非常熟悉,对未来的瓶颈把握准确)

一、微观估算法

我们在通过SQL与数据库交互时,数据库是如何执行SQL的呢?

首先要PARSE SQL,然后生成执行路径,选择最优执行路径,执行SQL,最关键的是选择最优执行路径。PostgreSQL是CBO的优化器,根据成本选择。

这里提到了成本,成本是怎么算出来的呢?成本是结合扫描方法、统计信息、估算需要扫描多少个数据块,扫描多少条记录,最后通过对应扫描方法的成本估算算法算出来的。

一个 QUERY 有哪些成本

1、成本包括:

IO成本,CPU成本。

2、IO成本包括:

连续IO成本,离散IO层板。

3、CPU成本包括:

获取索引、TOAST索引、堆表、TOAST表的tuple或ITEM的成本;

操作符、函数处理行的成本;

处理JOIN的成本等等。

一个 QUERY 如何执行和传递成本

生成好执行计划后,QUERY的执行就会按执行树来执行


20170921_01_pic_001.jpg执行树由若干个节点组成,从一个节点,跳到下一个节点,就好像接力赛一样。


节点跟节点之间传递的是什么呢?

Path数据结构,主要包含(rows, startup_cost, total_cost)。一个数据节点

rows,表示这个节点有多少满足条件的行,输出到下一个节点。

startup_cost,表示这个节点得到第一条符合条件的记录,需要多少成本。

total_cost,表示这个节点得到所有符合条件的记录,需要多少成本。

执行节点有哪些种

执行节点的种类很多,可以从成本计算的代码中得到:

src/backend/optimizer/path/costsize.c

/*  
 * cost_seqscan  
 *        Determines and returns the cost of scanning a relation sequentially.  
 *  
 * 'baserel' is the relation to be scanned  
 * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL  
 */  
cost_seqscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)  
/*  
 * cost_samplescan  
 *        Determines and returns the cost of scanning a relation using sampling.  
 *  
 * 'baserel' is the relation to be scanned  
 * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL  
 */  
cost_samplescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)  
/*  
 * cost_gather  
 *        Determines and returns the cost of gather path.  
 *  
 * 'rel' is the relation to be operated upon  
 * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL  
 * 'rows' may be used to point to a row estimate; if non-NULL, it overrides  
 * both 'rel' and 'param_info'.  This is useful when the path doesn't exactly  
 * correspond to any particular RelOptInfo.  
 */  
cost_gather(GatherPath *path, PlannerInfo *root, RelOptInfo *rel,   
ParamPathInfo *param_info, double *rows)  
/*  
 * cost_gather_merge  
 *        Determines and returns the cost of gather merge path.  
 *  
 * GatherMerge merges several pre-sorted input streams, using a heap that at  
 * any given instant holds the next tuple from each stream. If there are N  
 * streams, we need about N*log2(N) tuple comparisons to construct the heap at  
 * startup, and then for each output tuple, about log2(N) comparisons to  
 * replace the top heap entry with the next tuple from the same stream.  
 */  
cost_gather_merge(GatherMergePath *path, PlannerInfo *root, RelOptInfo *rel,   
ParamPathInfo *param_info, Cost input_startup_cost, Cost input_total_cost, double *rows)  
/*  
 * cost_index  
 *        Determines and returns the cost of scanning a relation using an index.  
 *  
 * 'path' describes the indexscan under consideration, and is complete  
 *              except for the fields to be set by this routine  
 * 'loop_count' is the number of repetitions of the indexscan to factor into  
 *              estimates of caching behavior  
 *  
 * In addition to rows, startup_cost and total_cost, cost_index() sets the  
 * path's indextotalcost and indexselectivity fields.  These values will be  
 * needed if the IndexPath is used in a BitmapIndexScan.  
 *  
 * NOTE: path->indexquals must contain only clauses usable as index  
 * restrictions.  Any additional quals evaluated as qpquals may reduce the  
 * number of returned tuples, but they won't reduce the number of tuples  
 * we have to fetch from the table, so they don't reduce the scan cost.  
 */  
cost_index(IndexPath *path, PlannerInfo *root, double loop_count, bool partial_path)  
/*  
 * cost_bitmap_heap_scan  
 *        Determines and returns the cost of scanning a relation using a bitmap  
 *        index-then-heap plan.  
 *  
 * 'baserel' is the relation to be scanned  
 * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL  
 * 'bitmapqual' is a tree of IndexPaths, BitmapAndPaths, and BitmapOrPaths  
 * 'loop_count' is the number of repetitions of the indexscan to factor into  
 *              estimates of caching behavior  
 *  
 * Note: the component IndexPaths in bitmapqual should have been costed  
 * using the same loop_count.  
 */  
cost_bitmap_heap_scan(Path *path, PlannerInfo *root, RelOptInfo *baserel,   
ParamPathInfo *param_info, Path *bitmapqual, double loop_count)  
/*  
 * cost_bitmap_tree_node  
 *              Extract cost and selectivity from a bitmap tree node (index/and/or)  
 */  
cost_bitmap_tree_node(Path *path, Cost *cost, Selectivity *selec)  
/*  
 * cost_bitmap_and_node  
 *              Estimate the cost of a BitmapAnd node  
 *  
 * Note that this considers only the costs of index scanning and bitmap  
 * creation, not the eventual heap access.  In that sense the object isn't  
 * truly a Path, but it has enough path-like properties (costs in particular)  
 * to warrant treating it as one.  We don't bother to set the path rows field,  
 * however.  
 */  
cost_bitmap_and_node(BitmapAndPath *path, PlannerInfo *root)  
/*  
 * cost_bitmap_or_node  
 *              Estimate the cost of a BitmapOr node  
 *  
 * See comments for cost_bitmap_and_node.  
 */  
cost_bitmap_or_node(BitmapOrPath *path, PlannerInfo *root)  
/*  
 * cost_tidscan  
 *        Determines and returns the cost of scanning a relation using TIDs.  
 *  
 * 'baserel' is the relation to be scanned  
 * 'tidquals' is the list of TID-checkable quals  
 * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL  
 */  
cost_tidscan(Path *path, PlannerInfo *root, RelOptInfo *baserel,   
List *tidquals, ParamPathInfo *param_info)  
/*  
 * cost_subqueryscan  
 *        Determines and returns the cost of scanning a subquery RTE.  
 *  
 * 'baserel' is the relation to be scanned  
 * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL  
 */  
cost_subqueryscan(SubqueryScanPath *path, PlannerInfo *root,   
RelOptInfo *baserel, ParamPathInfo *param_info)  
/*  
 * cost_functionscan  
 *        Determines and returns the cost of scanning a function RTE.  
 *  
 * 'baserel' is the relation to be scanned  
 * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL  
 */  
cost_functionscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)  
/*  
 * cost_tablefuncscan  
 *        Determines and returns the cost of scanning a table function.  
 *  
 * 'baserel' is the relation to be scanned  
 * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL  
 */  
cost_tablefuncscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)  
/*  
 * cost_valuesscan  
 *        Determines and returns the cost of scanning a VALUES RTE.  
 *  
 * 'baserel' is the relation to be scanned  
 * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL  
 */  
cost_valuesscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)  
/*  
 * cost_ctescan  
 *        Determines and returns the cost of scanning a CTE RTE.  
 *  
 * Note: this is used for both self-reference and regular CTEs; the  
 * possible cost differences are below the threshold of what we could  
 * estimate accurately anyway.  Note that the costs of evaluating the  
 * referenced CTE query are added into the final plan as initplan costs,  
 * and should NOT be counted here.  
 */  
cost_ctescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)  
cost_namedtuplestorescan(Path *path, PlannerInfo *root,   
RelOptInfo *baserel, ParamPathInfo *param_info)  
/*  
 * cost_recursive_union  
 *        Determines and returns the cost of performing a recursive union,  
 *        and also the estimated output size.  
 *  
 * We are given Paths for the nonrecursive and recursive terms.  
 */  
cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)  
/*  
 * cost_sort  
 *        Determines and returns the cost of sorting a relation, including  
 *        the cost of reading the input data.  
 *  
 * If the total volume of data to sort is less than sort_mem, we will do  
 * an in-memory sort, which requires no I/O and about t*log2(t) tuple  
 * comparisons for t tuples.  
 *  
 * If the total volume exceeds sort_mem, we switch to a tape-style merge  
 * algorithm.  There will still be about t*log2(t) tuple comparisons in  
 * total, but we will also need to write and read each tuple once per  
 * merge pass.  We expect about ceil(logM(r)) merge passes where r is the  
 * number of initial runs formed and M is the merge order used by tuplesort.c.  
 * Since the average initial run should be about sort_mem, we have  
 *              disk traffic = 2 * relsize * ceil(logM(p / sort_mem))  
 *              cpu = comparison_cost * t * log2(t)  
 *  
 * If the sort is bounded (i.e., only the first k result tuples are needed)  
 * and k tuples can fit into sort_mem, we use a heap method that keeps only  
 * k tuples in the heap; this will require about t*log2(k) tuple comparisons.  
 *  
 * The disk traffic is assumed to be 3/4ths sequential and 1/4th random  
 * accesses (XXX can't we refine that guess?)  
 *  
 * By default, we charge two operator evals per tuple comparison, which should  
 * be in the right ballpark in most cases.  The caller can tweak this by  
 * specifying nonzero comparison_cost; typically that's used for any extra  
 * work that has to be done to prepare the inputs to the comparison operators.  
 *  
 * 'pathkeys' is a list of sort keys  
 * 'input_cost' is the total cost for reading the input data  
 * 'tuples' is the number of tuples in the relation  
 * 'width' is the average tuple width in bytes  
 * 'comparison_cost' is the extra cost per comparison, if any  
 * 'sort_mem' is the number of kilobytes of work memory allowed for the sort  
 * 'limit_tuples' is the bound on the number of output tuples; -1 if no bound  
 *  
 * NOTE: some callers currently pass NIL for pathkeys because they  
 * can't conveniently supply the sort keys.  Since this routine doesn't  
 * currently do anything with pathkeys anyway, that doesn't matter...  
 * but if it ever does, it should react gracefully to lack of key data.  
 * (Actually, the thing we'd most likely be interested in is just the number  
 * of sort keys, which all callers *could* supply.)  
 */  
cost_sort(Path *path, PlannerInfo *root, List *pathkeys,   
Cost input_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)  
/*  
 * cost_append  
 *        Determines and returns the cost of an Append node.  
 *  
 * We charge nothing extra for the Append itself, which perhaps is too  
 * optimistic, but since it doesn't do any selection or projection, it is a  
 * pretty cheap node.  
 */  
cost_append(Path *path, List *subpaths, int num_nonpartial_subpaths)  
/*  
 * cost_merge_append  
 *        Determines and returns the cost of a MergeAppend node.  
 *  
 * MergeAppend merges several pre-sorted input streams, using a heap that  
 * at any given instant holds the next tuple from each stream.  If there  
 * are N streams, we need about N*log2(N) tuple comparisons to construct  
 * the heap at startup, and then for each output tuple, about log2(N)  
 * comparisons to replace the top entry.  
 *  
 * (The effective value of N will drop once some of the input streams are  
 * exhausted, but it seems unlikely to be worth trying to account for that.)  
 *  
 * The heap is never spilled to disk, since we assume N is not very large.  
 * So this is much simpler than cost_sort.  
 *  
 * As in cost_sort, we charge two operator evals per tuple comparison.  
 *  
 * 'pathkeys' is a list of sort keys  
 * 'n_streams' is the number of input streams  
 * 'input_startup_cost' is the sum of the input streams' startup costs  
 * 'input_total_cost' is the sum of the input streams' total costs  
 * 'tuples' is the number of tuples in all the streams  
 */  
cost_merge_append(Path *path, PlannerInfo *root, List *pathkeys,   
int n_streams, Cost input_startup_cost, Cost input_total_cost, double tuples)  
/*  
 * cost_material  
 *        Determines and returns the cost of materializing a relation, including  
 *        the cost of reading the input data.  
 *  
 * If the total volume of data to materialize exceeds work_mem, we will need  
 * to write it to disk, so the cost is much higher in that case.  
 *  
 * Note that here we are estimating the costs for the first scan of the  
 * relation, so the materialization is all overhead --- any savings will  
 * occur only on rescan, which is estimated in cost_rescan.  
 */  
cost_material(Path *path, Cost input_startup_cost,   
Cost input_total_cost, double tuples, int width)  
/*  
 * cost_agg  
 *              Determines and returns the cost of performing an Agg plan node,  
 *              including the cost of its input.  
 *  
 * aggcosts can be NULL when there are no actual aggregate functions (i.e.,  
 * we are using a hashed Agg node just to do grouping).  
 *  
 * Note: when aggstrategy == AGG_SORTED, caller must ensure that input costs  
 * are for appropriately-sorted input.  
 */  
cost_agg(Path *path, PlannerInfo *root, AggStrategy aggstrategy,   
const AggClauseCosts *aggcosts, int numGroupCols, double numGroups, Cost input_startup_cost, Cost input_total_cost, double input_tuples)  
/*  
 * cost_windowagg  
 *              Determines and returns the cost of performing a WindowAgg plan node,  
 *              including the cost of its input.  
 *  
 * Input is assumed already properly sorted.  
 */  
cost_windowagg(Path *path, PlannerInfo *root, List *windowFuncs,   
int numPartCols, int numOrderCols, Cost input_startup_cost, Cost input_total_cost, double input_tuples)  
/*  
 * cost_group  
 *              Determines and returns the cost of performing a Group plan node,  
 *              including the cost of its input.  
 *  
 * Note: caller must ensure that input costs are for appropriately-sorted  
 * input.  
 */  
cost_group(Path *path, PlannerInfo *root, int numGroupCols, double numGroups,  
                   Cost input_startup_cost, Cost input_total_cost,  
                   double input_tuples)  
/*  
 * cost_subplan  
 *              Figure the costs for a SubPlan (or initplan).  
 *  
 * Note: we could dig the subplan's Plan out of the root list, but in practice  
 * all callers have it handy already, so we make them pass it.  
 */  
cost_subplan(PlannerInfo *root, SubPlan *subplan, Plan *plan)  
/*  
 * cost_rescan  
 *              Given a finished Path, estimate the costs of rescanning it after  
 *              having done so the first time.  For some Path types a rescan is  
 *              cheaper than an original scan (if no parameters change), and this  
 *              function embodies knowledge about that.  The default is to return  
 *              the same costs stored in the Path.  (Note that the cost estimates  
 *              actually stored in Paths are always for first scans.)  
 *  
 * This function is not currently intended to model effects such as rescans  
 * being cheaper due to disk block caching; what we are concerned with is  
 * plan types wherein the executor caches results explicitly, or doesn't  
 * redo startup calculations, etc.  
 */  
cost_rescan(PlannerInfo *root, Path *path, Cost *rescan_startup_cost,      /* output parameters */  
                        Cost *rescan_total_cost)  
/*  
 * cost_qual_eval  
 *              Estimate the CPU costs of evaluating a WHERE clause.  
 *              The input can be either an implicitly-ANDed list of boolean  
 *              expressions, or a list of RestrictInfo nodes.  (The latter is  
 *              preferred since it allows caching of the results.)  
 *              The result includes both a one-time (startup) component,  
 *              and a per-evaluation component.  
 */  
cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)  
/*  
 * cost_qual_eval_node  
 *              As above, for a single RestrictInfo or expression.  
 */  
cost_qual_eval_node(QualCost *cost, Node *qual, PlannerInfo *root)  
cost_qual_eval_walker(Node *node, cost_qual_eval_context *context)  

如何估算每个节点的成本

记得前面提到的接力棒吗?接力棒里面包含了rows,这个非常关键。

rows是告诉下一个节点,你可能要处理这么多行。

而有rows是不够的,还有成本因子,因为每行还可能涉及到操作符的计算、并行worker的成本等。

这些因子的设置如下:

src/backend/optimizer/path/costsize.c

 *      seq_page_cost           Cost of a sequential page fetch  
 *      random_page_cost        Cost of a non-sequential page fetch  
 *      cpu_tuple_cost          Cost of typical CPU time to process a tuple  
 *      cpu_index_tuple_cost    Cost of typical CPU time to process an index tuple  
 *      cpu_operator_cost       Cost of CPU time to execute an operator or function  
 *      parallel_tuple_cost     Cost of CPU time to pass a tuple from worker to master backend  
 *      parallel_setup_cost     Cost of setting up shared memory for parallelism  

一些优化器的成本估算例子,可以参考文档:

https://www.postgresql.org/docs/10/static/planner-stats-details.html

src/backend/optimizer/path/costsize.c

从成本如何得到执行时间

注意成本是虚化的东西,和时间是不挂钩的,但是我们可以让他们挂钩起来。

这就需要做校准,把成本因子调教成输出的cost等于执行时间的值。

我在之前发表的文章中提到了如何校准,请参考。

《优化器成本因子校对 - PostgreSQL explain cost constants alignment to timestamp》

《PostgreSQL 10 黑科技 - 自定义统计信息》

如何在用户没有数据的情况下,估算性能

实际上方法很简单,我们需要业务方提供几个东西即可:

1、表定义

2、被评估的SQL

3、统计信息,需要提供我用中文注释的部分。

                     View "pg_catalog.pg_stats"  
         Column         |   Type   | Collation | Nullable | Default   
------------------------+----------+-----------+----------+---------  
 schemaname             | name     |           |          |   
 tablename              | name     |           |          |   
 attname                | name     |           |          |   
 inherited              | boolean  |           |          |   
 null_frac              | real     |           |          | 空值比例  
 avg_width              | integer  |           |          | 平均行长度  
 n_distinct             | real     |           |          | 多少唯一值,或唯一值比例,-1表示唯一  
 most_common_vals       | anyarray |           |          | 高频词  
 most_common_freqs      | real[]   |           |          | 高频词的出现频率  
 histogram_bounds       | anyarray |           |          | 按记录数均分为若干BUCKET的 分位数(列值)  
 correlation            | real     |           |          | 存储和实际值的线性相关性  
 most_common_elems      | anyarray |           |          | 对于多值类型(数组),元素的高频词  
 most_common_elem_freqs | real[]   |           |          | 元素高频词出现的频率  
 elem_count_histogram   | real[]   |           |          | 元素按记录数均分为若干BUCKET的 分位数(元素值)  

因为pg_stats支持导出导入,所以不需要实际数据即可完成,postgrespro版本就提供了这样的功能。

https://postgrespro.com/docs/postgresproee/9.6/dump-stat.html

4、已调教好的成本因子

 *      seq_page_cost           Cost of a sequential page fetch  
 *      random_page_cost        Cost of a non-sequential page fetch  
 *      cpu_tuple_cost          Cost of typical CPU time to process a tuple  
 *      cpu_index_tuple_cost    Cost of typical CPU time to process an index tuple  
 *      cpu_operator_cost       Cost of CPU time to execute an operator or function  
 *      parallel_tuple_cost     Cost of CPU time to pass a tuple from worker to master backend  
 *      parallel_setup_cost     Cost of setting up shared memory for parallelism  
int                     effective_cache_size = DEFAULT_EFFECTIVE_CACHE_SIZE;  

有以上要素,我们就能通过explain SQL得到估算出来的SQL执行时间。

就可以得到TPS等等。

从执行时间如何得到TPS

分为几种情况

1、CPU是瓶颈时,TPS = 核数*(1秒/执行时间)。

2、IO是瓶颈时,TPS = (磁盘带宽或IO能力) / (每个query的读写吞吐或IO)

二、宏观估算法

宏观估算,通过产品本身的特色来估算。

Greenplum和PostgreSQL两个产品的特色

1、RDS PostgreSQL 10 适合以10TB ~ 100TB,OLTP为主,OLAP为辅的场景。与Oracle覆盖的场景非常类似。

兼容SQL:2011,百万+级tpmC。

支持多核并行计算。

支持可读写的OSS对象存储外部表。

支持常用类型、扩展数据类型:JSON(B)、Hstore(KV), PostGIS空间数据库、pgrouting(路由,图式搜索)、数组、ltree树类型、HLL估值类型, smlar, imgsmlr等。

支持SQL流计算插件

支持时序插件

支持btree, hash, gin, gist, sp-gist, bloom, brin等索引。

支持plpgsql, sql服务端编程。

支持分析型语法(多维计算、窗口查询)、递归查询(树形查询、图式搜索、等场景)。支持文本全文检索、模糊查询、相似查询、正则查询。支持数组相似查询,图像相似查询。

1.1 适合业务场景:

 
         

上面的两篇文档中,设计了一个场景,里面就涉及到如何设计场景,如何设计结构、QUERY、以及测试脚本,压测。

下面再列举一个例子。

1、设计表结构

create table a(id int8 primary key, info text, crt_time timestamp);  

2、设计SQL

insert into a values (:id, md5(random()::text), now()) on conflict (id) do update set info=excluded.info, crt_time=excluded.crt_time;  

3、设计测试脚本

pgbench里面支持多种随机数生成方法,支持sleep来模拟客户端业务逻辑的处理,支持多线程。具体详见pgbench文档。

vi test.sql  
\set id random(1,100000000)  
insert into a values (:id, md5(random()::text), now()) on conflict (id) do update set info=excluded.info, crt_time=excluded.crt_time;  



4、压测(连接数、压测时长)

pgbench -M prepared -n -r -P 1 -f ./test.sql -c 32 -j 32 -T 120  
transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 32  
number of threads: 32  
duration: 120 s  
number of transactions actually processed: 37100343  
latency average = 0.103 ms  
latency stddev = 0.282 ms  
tps = 309166.975398 (including connections establishing)  
tps = 309180.511436 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.001  \set id random(1,100000000)  
         0.103  insert into a values (:id, md5(random()::text), now()) on conflict (id) do update set info=excluded.info, crt_time=excluded.crt_time;  



PostgreSQL测试客户端pgbench文档:

https://www.postgresql.org/docs/9.6/static/pgbench.html

工业标准测

1tpc-b

PostgreSQL pgbench客户端自带的测试模型,就是tpc-b。具体请参考pgbench的帮助文档,很简单。

https://www.postgresql.org/docs/9.6/static/pgbench.html

2pgbench for sysbench

这个测试的是一些mysql流行的场景

PostgreSQL使用pgbench 测试sysbench 相关case

3tpc-c

TPC-C是工业标准的OLTP测试,涉及较多复杂查询。

《数据库界的华山论剑tpc.org

4linkbenchmark

linkbenchfacebook的一个测试模型,用于测试一些图论相关的写入和查询

facebook linkbench 测试PostgreSQL社交关系图谱场景性能》

四、一些常性能指

 20170921_01_pic_004.jpg


https://github.com/digoal/blog/blob/master/201711/readme.md

小结

根据业务的发展,估算数据库性能,估算需要投入多少硬件,本文提供了三种方法。

1、微观评估(相对来说比较准确)

当业务开发好后,表结构、QUERY都已经固定了,唯一不固定的是数据。数据可以通过业务方来估算,多少条记录,有多少唯一值,相关性如何,高频词情况如何等等。

结合 成本因子的调教、统计信息、结构、query,得到每一种QUERY的执行时间。评估达到这样的TPS需要多少硬件。

2、宏观评估(对选型有帮助,对规格帮助不大,略显粗糙)

宏观评估,适合选型,因为它只是多各种产品的特性的总结。

3、精准评估(最为准确,但是要求对业务非常熟悉,对未来的瓶颈把握准确)

这个可以在业务开发初期就进行评估,而且相对来说比较准确。

根据表结构,业务逻辑,设计测试脚本,根据实际的测试结果,结合业务的发展期望进行评估。

最后,本文还提供了若干种工业标准测试的方法,以及若干种已有的测试数据仅供参考。



相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
2月前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL的数据库
PostgreSQL的逻辑存储结构涵盖数据库集群、数据库、表、索引、视图等对象,每个对象有唯一的oid标识。数据库集群包含多个数据库,每个数据库又包含多个模式,模式内含表、函数等。通过特定SQL命令可查看和管理这些数据库对象。
|
2天前
|
存储 关系型数据库 分布式数据库
PolarDB PostgreSQL版:商业数据库替换与企业上云首选
PolarDB PostgreSQL版是商业数据库替换与企业上云的首选。其技术架构实现存储计算分离,具备极致弹性和扩展性,支持Serverless、HTAP等特性。产品在弹性、性能、成本优化和多模处理方面有显著提升,如冷热数据自动分层、Ganos多模引擎等。已在汽车、交通、零售等行业成功应用,典型案例包括小鹏汽车、中远海科等,帮助企业大幅降低运维成本并提高业务效率。
23 13
|
2月前
|
存储 关系型数据库 数据库
【赵渝强老师】PostgreSQL的数据库集群
PostgreSQL的逻辑存储结构涵盖了数据库集群、数据库、表、索引、视图等对象,每个对象都有唯一的oid标识。数据库集群是由单个PostgreSQL实例管理的所有数据库集合,共享同一配置和资源。集群的数据存储在一个称为数据目录的单一目录中,可通过-D选项或PGDATA环境变量指定。
|
2月前
|
关系型数据库 分布式数据库 数据库
PostgreSQL+Citus分布式数据库
PostgreSQL+Citus分布式数据库
87 15
|
2月前
|
SQL 关系型数据库 数据库
PostgreSQL性能飙升的秘密:这几个调优技巧让你的数据库查询速度翻倍!
【10月更文挑战第25天】本文介绍了几种有效提升 PostgreSQL 数据库查询效率的方法,包括索引优化、查询优化、配置优化和硬件优化。通过合理设计索引、编写高效 SQL 查询、调整配置参数和选择合适硬件,可以显著提高数据库性能。
568 1
|
2月前
|
存储 Cloud Native NoSQL
云原生时代的数据库选型与架构设计
云原生时代的数据库选型与架构设计
34 0
|
27天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
55 3
|
27天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
64 3
|
27天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE 'log_%';`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
84 2
|
1月前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
261 15