基于画像的特征推荐

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 基于画像的商品推荐<br />数据源:真实购物数据<br />数据大小:184 KB<br />字段数量:4<br />使用组件:Comments Node,归一化,过滤与映射,SQL脚本,缺失值填充,读数据表,JOIN,类型转换<br />
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
机器学习/深度学习 数据采集 运维
聚类细分
聚类是一种无监督学习方法,它通过分析数据集中的特征和规律,将数据自动划分为若干个具有相似特征的簇(cluster)。聚类的目的是找出数据之间的内在联系,为数据挖掘和分析提供有用的信息。在聚类的细分方面,可以根据不同的维度对聚类方法进行分类:
159 1
|
数据采集 算法 搜索推荐
【干货】RFM分析与客户聚类
关注公众号“达摩院首座”,了解开发者最真实生活
1069 0
【干货】RFM分析与客户聚类
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
95 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
4月前
|
自然语言处理 数据挖掘
数据特征包括分布特征、统计特征、对比特征、帕累托特征和文本特征
数据特征包括分布特征、统计特征、对比特征、帕累托特征和文本特征
162 4
|
4月前
|
机器学习/深度学习 数据挖掘
数据特征
数据特征
135 1
|
机器学习/深度学习 搜索推荐 数据挖掘
138 推荐引擎的分类
138 推荐引擎的分类
61 0
|
数据可视化
WGCNA 简明指南|2. 模块与性状关联分析并识别重要基因
WGCNA 简明指南|2. 模块与性状关联分析并识别重要基因
1365 0
WGCNA 简明指南|2. 模块与性状关联分析并识别重要基因
|
机器学习/深度学习 算法
余弦相似度算法进行客户流失分类预测
余弦相似性是一种用于计算两个向量之间相似度的方法,常被用于文本分类和信息检索领域。
151 0
|
机器学习/深度学习 数据采集 人工智能
一览无余 | BMEC:基于形状感知的红细胞细粒度分类
一览无余 | BMEC:基于形状感知的红细胞细粒度分类
152 0
|
机器学习/深度学习 数据采集 人工智能
一览无余!| BMEC:基于形状感知的红细胞细粒度分类
一览无余!| BMEC:基于形状感知的红细胞细粒度分类
107 0