阿里云机器学习ModelHub使用Quick Start

简介: 在阿里云机器学习PAI ModelHub,PAI提供多种已训练好的成熟模型,为您快速触达业务。点击模型部署即可一键将模型部署为在线服务供业务调用。阿里云免费提供以下模型,您只需要承担模型部署产生的计算资源费用。本文以货架商品检测模型为例演示模型的部署与服务调用。

Step By Step

1、获取模型
2、模型在线部署
3、SDK调用部署模型


一、获取模型
在机器学习PAI模型管理获取模型,控制台 地址

图片.png

  • 货架商品计数模型介绍
该模型采用YoloV5检测模型和细粒度分类模型两阶段串联,能够返回常见物体的类别信息、检测框位置及图像中每类商品的计数。目前,该模型共支持171种不同的瓶饮SKU类别
二、模型在线部署
  • 2.1 模型部署

图片.png

图片.png

图片.png

注意:GPU资源部署配置要求:使用T4显卡,不低于4 核,内存不低于16G。如未按上述配置要求部署,会导致部署失败或服务无法调用

  • 2.2 模型调用参数获取

图片.png

图片.png

三、Python SDK调用部署模型
  • 3.1 SDK 安装
pip install -U eas-prediction --user
  • 3.2 Code Sample
#!/usr/bin/env python
from eas_prediction import PredictClient
from eas_prediction import StringRequest
import base64

# 读取本地图片
filenamePath = "C:\\Users\\Administrator\\Desktop\\29.jpg"  # 测试图片存放在项目目录下
base64_data = ''
with open(filenamePath, "rb") as f:
    base64_data = base64.b64encode(f.read())

if __name__ == '__main__':

    # 完整的接口地址:http://17214402********.cn-shanghai.pai-eas.aliyuncs.com/api/predict/demo
    client = PredictClient('17214402********.cn-shanghai.pai-eas.aliyuncs.com', 'demo')
    #  注意上面的client = PredictClient()内填入的信息,是通过对调用信息窗口(下图)中获取的访问地址的拆分
    client.set_token('YmJiOWZhMDQ**************')

    #  Token信息在“EAS控制台—服务列表—服务—调用信息—公网地址调用—Token”中获取
    client.init()
    requestBody = '{"image":"'+base64_data.decode()+'"}'
    print(requestBody)

    request = StringRequest(requestBody)
    #  输入请求请根据模型进行构造,此处仅以字符串为输入输出的程序示例
    resp = client.predict(request)
    print(resp)
  • 3.3 The Result

b'{"request_id": "b1a06aec-0d2e-4513-af84-75d92302de4a", "success": true, "ori_img_shape": [1280, 720], "detection_boxes": [[327.481201171875, 714.094482421875, 404.125244140625, 937.6309814453125], [408.24554443359375, 716.003662109375, 479.36468505859375, 929.5745849609375], [247.078369140625, 420.04150390625, 331.18603515625, 637.4111328125], [337.09954833984375, 424.40948486328125, 413.90777587890625, 636.4845581054688], [246.8751220703125, 700.114990234375, 320.654541015625, 948.1328125], [536.753662109375, 456.63800048828125, 611.7236328125, 645.9170532226562], [417.15240478515625, 460.482421875, 465.25823974609375, 639.4288330078125], [557.0704345703125, 687.0117797851562, 605.61328125, 911.1828002929688], [407.97161865234375, 979.4371337890625, 466.75860595703125, 1094.9622802734375], [91.69937133789062, 757.7470703125, 157.96780395507812, 937.9561767578125], [489.9420166015625, 687.8649291992188, 553.0584716796875, 921.3740844726562], [532.0812377929688, 956.2311401367188, 580.8801879882812, 1067.905517578125], [172.47622680664062, 467.41741943359375, 235.27001953125, 636.8656616210938], [363.77398681640625, 1126.81689453125, 414.26031494140625, 1255.906005859375], [410.3504638671875, 265.8154296875, 472.620849609375, 396.99310302734375], [340.90704345703125, 260.6723327636719, 404.50653076171875, 397.0931091308594], [265.55389404296875, 255.7691192626953, 334.20501708984375, 402.55047607421875], [477.82781982421875, 285.53643798828125, 533.5737915039062, 399.93988037109375], [311.66107177734375, 1129.9979248046875, 359.06097412109375, 1261.0616455078125], [114.4017333984375, 478.44720458984375, 167.9227294921875, 632.7005004882812], [170.59661865234375, 750.3878173828125, 236.74688720703125, 946.761962890625], [416.9654541015625, 1120.63134765625, 455.64892578125, 1248.25927734375], [252.3658447265625, 974.9986572265625, 310.1572265625, 1105.2547607421875], [314.91033935546875, 985.51416015625, 372.83477783203125, 1091.97216796875], [580.1760864257812, 331.96722412109375, 626.5945434570312, 410.743896484375], [120.94692993164062, 973.6834106445312, 177.46969604492188, 1116.9759521484375], [217.83059692382812, 1134.9564208984375, 269.346435546875, 1258.7301025390625], [457.27593994140625, 1110.9752197265625, 489.77276611328125, 1233.9022216796875], [268.48651123046875, 1131.84130859375, 308.86138916015625, 1259.72705078125], [166.51290893554688, 1139.879638671875, 214.55819702148438, 1250.445068359375], [548.14501953125, 1085.05126953125, 591.8983154296875, 1190.6103515625]], "detection_scores": [0.5326253771781921, 0.4829007089138031, 0.4735769033432007, 0.56972736120224, 0.5581203103065491, 0.47067806124687195, 0.4176042973995209, 0.6494063138961792, 0.9763787984848022, 0.6203807592391968, 0.6229503154754639, 0.995220959186554, 0.7561615109443665, 0.96540766954422, 0.7088794112205505, 0.6708459854125977, 0.9078369140625, 0.4620403051376343, 0.6637236475944519, 0.539475679397583, 0.537329912185669, 0.5928680896759033, 0.9760238528251648, 0.7584733366966248, 0.505286693572998, 0.4664297103881836, 0.8538541197776794, 0.41185709834098816, 0.4183993935585022, 0.9568557739257812, 0.9400320053100586], "detection_classes": [97, 97, 98, 16, 80, 29, 147, 9, 4, 131, 5, 95, 7, 124, 29, 29, 71, 114, 21, 7, 5, 147, 66, 111, 98, 159, 111, 80, 52, 66, 0], "detection_class_names": ["299", "299", "298", "349", "308", "332", "320", "342", "306", "478", "305", "368", "303", "712", "332", "332", "301", "433", "341", "303", "305", "320", "468", "432", "298", "4", "432", "308", "777", "468", "189"], "product_count": {"299": 2, "298": 2, "349": 1, "308": 2, "332": 3, "320": 2, "342": 1, "306": 1, "478": 1, "305": 2, "368": 1, "303": 2, "712": 1, "301": 1, "433": 1, "341": 1, "468": 2, "432": 2, "4": 1, "777": 1, "189": 1}}'

更多参考

图像智能处理类模型
Python SDK使用说明

相关文章
|
22天前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
27天前
|
JSON 测试技术 API
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
|
3月前
|
机器学习/深度学习 存储 人工智能
【ACL2024】阿里云人工智能平台PAI多篇论文入选ACL2024
近期,阿里云人工智能平台PAI的多篇论文在ACL2024上入选。论文成果是阿里云与阿里集团安全部、华南理工大学金连文教授团队、华东师范大学何晓丰教授团队共同研发。ACL(国际计算语言学年会)是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台PAI在自然语言处理和多模态算法、算法框架能力方面研究获得了学术界认可。
|
3月前
|
机器学习/深度学习 存储 缓存
Java本地高性能缓存实践问题之阿里云机器学习团队开源社区的问题如何解决
Java本地高性能缓存实践问题之阿里云机器学习团队开源社区的问题如何解决
|
3月前
|
机器学习/深度学习 存储 缓存
模型遇见知识图谱问题之参与阿里云机器学习团队的开源社区的问题如何解决
模型遇见知识图谱问题之参与阿里云机器学习团队的开源社区的问题如何解决
|
16天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
24天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
49 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能