Pandas之四缺失数据处理

简介: pandas在处理缺失数据的几种方法,删除、填充和判断

Pandas之四缺失数据处理

在实际的数据处理过程当中,不可避免地会遇到有部分数据缺失。比如在分析股票行情数据时,有部分股票有时会停牌就会出现行情数据缺失的情况。

一般在pandas中将缺失值以np.nan来表示,其好处是会在计算时忽略,同时其类型是float,不影响总体数据计算。数据分析时就要处理这些缺失值,pandas提供了缺失数据处理方法,包括删除缺失值、缺失值填充、缺失值判断等。

首先在前文数据上,生成新的dataframe:

在这里插入图片描述

删除缺失值

使用.dropna删除缺失值,可以针对整个dataframe,也可以针对某列或某行

1. 从整个df删除缺失值

常用参数how:any指只要某行存在缺失值,即将该行删除;all指某行全部都是缺失值才删除。

如下图,指定为all时,只删除了2021-09-07行的数据

在这里插入图片描述

2. 从某列删除缺失值

将E列的缺失数据删除掉

在这里插入图片描述

3. 从某行删除缺失值

2021-09-03的缺失数据删除掉

在这里插入图片描述

缺失值填充

使用.fillna为缺失值填充数据,可以为dataframe所有缺失值填充数据,也可以为某行或某列填充数据

1. 为df所有缺失值填充数据

在这里插入图片描述

2. 为某列填充缺失值

选取dataframe中的E列,将其中的缺失值填充为9

在这里插入图片描述

3. 为某行填充缺失值

将dataframe中2021-09-07行的缺失值以9来填充

在这里插入图片描述

缺失值判断

pandas提供.isna对缺失值进行判断,若是缺失值返回为True,否则返回False。可以对dataframe所有缺失值进行判断,也可以针对某行或某列做判断

1. 对df所有缺失值进行判断

在这里插入图片描述

2. 对某列缺失值进行判断

针对dataframe中的E列数据做缺失值判断

在这里插入图片描述

3. 对某行缺失值进行判断

选取2021-09-012021-09-03之间的数据进行缺失值判断


欢迎关注微信公众号:数据研发技术,收获各类数据研发技术干货

目录
相关文章
|
9天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
30 0
|
2月前
|
数据采集 数据可视化 数据挖掘
Pandas函数大合集:数据处理神器一网打尽!
Pandas函数大合集:数据处理神器一网打尽!
34 0
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
67 0
|
9天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
21 1
|
30天前
|
并行计算 大数据 数据处理
亿级数据处理,Pandas的高效策略
在大数据时代,数据量的爆炸性增长对处理技术提出更高要求。本文介绍如何利用Python的Pandas库及其配套工具高效处理亿级数据集,包括:采用Dask进行并行计算,分块读取以减少内存占用,利用数据库进行复杂查询,使用内存映射优化Pandas性能,以及借助PySpark实现分布式数据处理。通过这些方法,亿级数据处理变得简单高效,助力我们更好地挖掘数据价值。
41 1
|
1月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
71 3
|
2月前
|
数据采集 数据挖掘 数据处理
Pandas实践:南京地铁数据处理分析
Pandas实践:南京地铁数据处理分析
32 2
|
3月前
|
数据采集 数据挖掘 数据处理
解锁Python数据分析新技能!Pandas实战学习,让你的数据处理能力瞬间飙升!
【8月更文挑战第22天】Python中的Pandas库简化了数据分析工作。本文通过分析一个金融公司的投资数据文件“investment_data.csv”,介绍了Pandas的基础及高级功能。首先读取并检查数据,包括显示前几行、列名、形状和数据类型。随后进行数据清洗,移除缺失值与重复项。接着转换日期格式,并计算投资收益。最后通过分组计算平均投资回报率,展示了Pandas在数据处理与分析中的强大能力。
44 0
|
4月前
|
机器学习/深度学习 数据采集 数据处理
重构数据处理流程:Pandas与NumPy高级特性在机器学习前的优化
【7月更文挑战第14天】在数据科学中,Pandas和NumPy是数据处理的关键,用于清洗、转换和计算。用`pip install pandas numpy`安装后,Pandas的`read_csv`读取数据,`fillna`处理缺失值,`drop`删除列。Pandas的`apply`、`groupby`和`merge`执行复杂转换。NumPy加速数值计算,如`square`进行向量化操作,`dot`做矩阵乘法。结合两者优化数据预处理,提升模型训练效率和效果。
59 1
|
4月前
|
数据采集 机器学习/深度学习 数据处理
从基础到卓越:Pandas与NumPy在复杂数据处理中的实战策略
【7月更文挑战第14天】Pandas与NumPy在数据科学中的核心应用:**加载数据(如`read_csv`)、探索(`head()`, `info()`, `describe()`)、数据清洗(`fillna`, `dropna`, `replace`, `apply`)、数值计算(借助NumPy的`ndarray`)、分组聚合(`groupby`与聚合函数)、窗口函数(如`rolling`)和数据筛选排序(布尔索引,`query`,`sort_values`)。通过这些工具,实现从数据预处理到复杂分析的高效处理。
56 0
下一篇
无影云桌面