【学习记录】《DeepLearning.ai》第十一课:深度卷积网络:实例探究(Deep convolutional models:case studies)

简介: 2021/9/11

第十一课:深度卷积网络:实例探究(Deep convolutional models:case studies)

2.1 为什么要进行实例探究

PASS


2.2 经典网络(Classic networks)

三种经典的网络结构

1.LeNet-5

image

该网络结构没有使用padding,对于池化层,如果s=2,f=2,则图像的高度和宽度都缩小2倍,随着网络层的增加,图像的高度和宽度在缩小,而通道数在增加。

用的是平均池化

2.AlexNet

image

使用了same卷积,使用后图像的高度和宽度不变,使用了最大池化后宽度和高度减半。

3.VGG-16

image

Conv 64表示卷积核有64个,VGG-16表示有16个网络层和全连接层。其本身结构简单,没经过一次网络层,宽度和高度都减半,通道数都翻倍。


2.3 残差网络(ResNets)

国内的何恺明大佬提出的

image

个人理解:如上图,对于两层神经网络,若要计算$a^{[l+2]}$,需要进行一步步线性操作以及使用Relu激活函数,也就是,信息从$a^{[l]}$到$a^{[l+2]}$​需要经过上面的计算过程。​

image

而残差网络相当于直接跳过了$a^{[l+1]}$直接拷贝到神经网络的深层,然后在ReLU非线性激活函数上加上$a^{[l]}$,如下:

$$ a^{[l+2]}=g(z^{[l+2]}+a^{[l]}) $$

也就是加上了$a^{[l]}$产生了残差块。

image

如上图,蓝色框里面都是残差块,残差网络能使得神经网络在训练过程中误差一直减少。


2.4 残差网络有用的原因?

对于普通的网络,如果深度越深,训练效率就会变慢。

对于残差网络来说,如果残差块里面的隐层单元学到了一些东西,则它比学习恒等函数(在之前设置其权重和b都为0的时候)表现得更好。如下图

image

ResNets使用了很多的same卷积,保留了之前的维度。

image

image

前面是在全连接层使用残差网络,这块是在卷积层使用残差网络,跳跃连接。


2.5 网络中的网络以及1*1卷积

image

image

$1*1$网络让我们能够任意变换原输入的通道数,或者加上ReLU线性修正激活函数。


2.6 谷歌Inception网络(Inception network motivation)

image

基本思想是 Inception网络不需要人为决定使用哪个过滤器或者是否需要池化,而是由网络自行确定这些参数,你可以给网络添加这些参数的所有可能值,然后把这些输出连接起来,让网络自己学习它需要什么样的参数,采用哪些过滤器组合。

image

image

上面两个图表示了使用$1*1$​卷积之后可以减小计算量,降低计算成本。这是Inception模块的主要思想。


2.7 Inception网络

image

上面是一个Inception模块

image

这是一个Inception网络,就是将很多Inception模块连接起来。


2.8 使用开源实现方案

ResNets实现的 GitHub地址 https://github.com/KaimingHe/deep-residual-networks


2.9 迁移学习(Transfer learning)

image

将网络上的神经网络和已经训练好的权重拿来进而通过冻结某些层数来训练自己的数据。


2.10 数据增强(Data augmentation)

和之前重复了好像

PASS


2.11 计算机视觉现状

通常需要大量人工

总之,多参考别人的训练项目。


OVER

冲!

相关文章
|
2月前
|
人工智能 安全 算法
利用AI技术提升网络安全防御能力
【10月更文挑战第42天】随着人工智能技术的不断发展,其在网络安全领域的应用也日益广泛。本文将探讨如何利用AI技术提升网络安全防御能力,包括异常行为检测、恶意软件识别以及网络攻击预测等方面。通过实际案例和代码示例,我们将展示AI技术在网络安全防御中的潜力和优势。
|
2月前
|
人工智能 运维 物联网
AI在蜂窝网络中的应用前景
AI在蜂窝网络中的应用前景
63 3
|
18天前
|
数据采集 人工智能 自然语言处理
FireCrawl:开源 AI 网络爬虫工具,自动爬取网站及子页面内容,预处理为结构化数据
FireCrawl 是一款开源的 AI 网络爬虫工具,专为处理动态网页内容、自动爬取网站及子页面而设计,支持多种数据提取和输出格式。
91 18
FireCrawl:开源 AI 网络爬虫工具,自动爬取网站及子页面内容,预处理为结构化数据
|
28天前
|
数据采集 机器学习/深度学习 人工智能
基于AI的网络流量分析:构建智能化运维体系
基于AI的网络流量分析:构建智能化运维体系
113 13
|
2月前
|
弹性计算 监控 数据库
制造企业ERP系统迁移至阿里云ECS的实例,详细介绍了从需求分析、数据迁移、应用部署、网络配置到性能优化的全过程
本文通过一个制造企业ERP系统迁移至阿里云ECS的实例,详细介绍了从需求分析、数据迁移、应用部署、网络配置到性能优化的全过程,展示了企业级应用上云的实践方法与显著优势,包括弹性计算资源、高可靠性、数据安全及降低维护成本等,为企业数字化转型提供参考。
70 5
|
2月前
|
机器学习/深度学习 人工智能 安全
AI与网络安全:防御黑客的新武器
在数字化时代,网络安全面临巨大挑战。本文探讨了人工智能(AI)在网络安全中的应用,包括威胁识别、自动化防御、漏洞发现和预测分析,展示了AI如何提升防御效率和准确性,成为对抗网络威胁的强大工具。
|
2月前
|
网络协议 Go
Go语言网络编程的实例
【10月更文挑战第27天】Go语言网络编程的实例
34 7
|
2月前
|
机器学习/深度学习 人工智能 物联网
5G与AI融合:智能网络的新纪元
【10月更文挑战第25天】
110 3
|
3月前
|
人工智能 关系型数据库 数据中心
2024 OCP全球峰会:阿里云为代表的中国企业,引领全球AI网络合作和技术创新
今年的OCP(Open Compute Project)峰会于2024年10月14日至17日在美国加州圣何塞举行,在这场全球瞩目的盛会上,以阿里云为代表的中国企业,展示了他们在AI网络架构、液冷技术、SRv6和广域网等前沿领域的强大创新能力,持续引领全球合作与技术创新。
|
3月前
|
人工智能 自然语言处理 NoSQL

热门文章

最新文章