Tensorflow日常随笔(一)

简介: TensorFlow is an end-to-end open source platform for machine learningTensorFlow makes it easy for beginners and experts to create machine learning models. See the sections below to get started.

TensorFlow is an end-to-end open source platform for machine learning

TensorFlow makes it easy for beginners and experts to create machine learning models. See the sections below to get started.

https://www.tensorflow.org/tutorials

Tutorials show you how to use TensorFlow with complete, end-to-end examples

https://www.tensorflow.org/guide

Guides explain the concepts and components of TensorFlow.

For beginners

The best place to start is with the user-friendly Sequential API. You can create models by plugging together building blocks. Run the “Hello World” example below, then visit the tutorials to learn more.

To learn ML, check out our education page. Begin with curated curriculums to improve your skills in foundational ML areas.

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

For experts

class MyModel(tf.keras.Model):
  def __init__(self):
    super(MyModel, self).__init__()
    self.conv1 = Conv2D(32, 3, activation='relu')
    self.flatten = Flatten()
    self.d1 = Dense(128, activation='relu')
    self.d2 = Dense(10, activation='softmax')

  def call(self, x):
    x = self.conv1(x)
    x = self.flatten(x)
    x = self.d1(x)
    return self.d2(x)
model = MyModel()

with tf.GradientTape() as tape:
  logits = model(images)
  loss_value = loss(logits, labels)
grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))

Learn about the relationship between TensorFlow and Keras

TensorFlow's high-level APIs are based on the Keras API standard for defining and training neural networks. Keras enables fast prototyping, state-of-the-art research, and production—all with user-friendly APIs.

Solutions to common problems

Explore step-by-step tutorials to help you with your projects.

https://www.tensorflow.org/tutorials/keras/classification

https://www.tensorflow.org/tutorials/generative/dcgan

https://www.tensorflow.org/tutorials/text/nmt_with_attention

News & announcements

Check out our blog for additional updates, and subscribe to our monthly TensorFlow newsletter to get the latest announcements sent directly to your inbox.

目录
相关文章
|
6月前
|
算法 TensorFlow 算法框架/工具
第3章 TensorFlow进阶
第3章 TensorFlow进阶
56 0
|
TensorFlow 算法框架/工具
tensorflow 入门学习
tensorflow 入门学习
39 0
|
3月前
|
人工智能 TensorFlow API
TensorFlow简介
【8月更文挑战第7天】TensorFlow简介。
82 3
|
6月前
|
机器学习/深度学习 TensorFlow API
TensorFlow 2.0 快速入门指南:第一部分
TensorFlow 2.0 快速入门指南:第一部分
201 0
|
6月前
|
机器学习/深度学习 存储 TensorFlow
TensorFlow 2.0 快速入门指南:第三部分
TensorFlow 2.0 快速入门指南:第三部分
183 0
|
6月前
|
机器学习/深度学习 算法 TensorFlow
TensorFlow 2.0 快速入门指南:第二部分
TensorFlow 2.0 快速入门指南:第二部分
71 0
|
机器学习/深度学习 TensorFlow API
TensorFlow2.0学习使用笔记
TensorFlow2.0学习使用笔记
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch入门教程
概念:由Facebook人工智能研究小组开发的一种基于Lua编写的Torch库的Python实现的深度学习库。 优势:简洁、上手快、具有良好的文档和社区支持、项目开源、支持代码调试、丰富的扩展库
486 0
Pytorch入门教程
|
机器学习/深度学习 数据可视化 数据挖掘
斯坦福tensorflow教程(一) tensorflow概述
斯坦福tensorflow教程(一) tensorflow概述
210 0
斯坦福tensorflow教程(一) tensorflow概述