聊一聊全球加速GA的带宽包选择

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 在大多数情况下,我们在使用GA全球加速时,带宽包的选择其实都超级简单。

全球加速GA服务是一项利用阿里云遍布全球的服务节点和高速的跨节点网络来为用户提供访问加速的一项服务。

这个服务经历过一次改版,之前的售卖方式相对简单,只是根据用户和服务器的距离进行收费,并且只支持对阿里云内的服务进行加速。在改版以后开始支持对阿里云之外的公网IP地址或域名进行加速。为了适配各种不同情况,全球加速引入了四种带宽包:标准带宽包、增强带宽包、精品带宽包、跨域带宽包,其中标准带宽包、增强带宽包、精品带宽包被归类为基础带宽包,基础带宽包为必选项,跨域带宽包为可选项。除了带宽包之外,全球加速服务还引入加速实例的概念,不同规格的加速实例支持不同数量的加速区域和不同级别的加速转发能力。

现在的全球加速服务包含两部分的费用:加速实例和带宽包,其中带宽包的选择初看起来有些复杂,因此今天就让我们重点来聊一聊到底该如何选择全球加速服务的带宽包。

关键是看服务器所在地,假如服务器在中国大陆,则没有机会用到精品带宽包,精品带宽包主要用在服务器在中国大陆以外的情况,然后再看服务器在阿里云还是非阿里云,假如服务器在阿里云的北京、青岛、杭州、上海、深圳、成都这几个地域则可以选择标准带宽包作为基础带宽包,假如服务器在非阿里云或者像张北(华北三)这样的地域则需要选择增强带宽包作为基础带宽包,其实为了后期便于服务的迁移,我的建议是假如服务器在中国大陆就直接选择增强带宽包即可。如果用户也在中国大陆,那么购买增强带宽包就可以满足需求了,对于用户在中国大陆以外地域的情况则需要再额外购买跨域带宽包。

假如服务器在中国大陆以外地域,则带宽包的选择将更加简单,这种情况下无论用户在中国大陆还是大陆以外地域我们都只需要选择精品带宽包,只不过当面向中国大陆用户提供服务时,我们则需要将加速区域设置为中国香港,这里应该是通过香港地域的精品线路EIP实现对大陆用户的加速访问的。

相比普通BGP(多线)线路EIP,BGP(多线)精品线路在为中国内地终端客户(不包括中国内地数据中心)提供服务时,通过底层网络直连回中国内地,无需绕行国际运营商出口,具有低时延的优势。您可以将BGP(多线)精品线路EIP绑定到ECS实例,实现中国内地终端用户低时延访问部署在中国(香港)地域的Web服务。

在大多数情况下,我们在使用GA全球加速时,带宽包的选择其实都超级简单:

  • 要么是增强带宽包+跨域带宽包来应对服务器在大陆,用户在境外的场景
  • 要么是精品带宽包来应对服务器在境外,用户在中国大陆的场景
目录
相关文章
|
8月前
|
监控 安全 UED
阿里云全球加速GA
阿里云全球加速GA(Global Accelerator)是一款覆盖全球的互联网加速服务,主要目的是为了减少网络延迟、丢包,提高网络传输效率。这款服务可以应用于游戏加速、应用加速等场景,为用户构建一个高性能、高可靠、高安全、易部署的加速网络。
466 1
|
域名解析 负载均衡 网络协议
全球加速GA加速IPv6普及
今天就让我来给大家介绍一下全球加速GA的副业:IPv6地址转换。
1061 0
全球加速GA加速IPv6普及
|
弹性计算 数据中心
聊一聊全球加速GA的带宽包选择
在大多数情况下,我们在使用GA全球加速时,带宽包的选择其实都超级简单。
491 0
|
云安全 运维 监控
豌豆思维:全球加速GA打造高品质的在线教学体验
豌豆思维与阿里云合作,结合阿里云的在线教育解决方案,透过阿里云安全可靠的全球云网络,打造高品质的在线教学体验,为孩子们的学习保驾护航。
1264 0
【云栖号案例 | 文化产业】全球加速GA助力CCTV5直播2020年洛桑冬季青年奥运会
未上云前视频流畅度差、传统卫星回传价格昂贵、部署周期长。采用GA全球加速降低网络时延、减少网络抖动、成本降低、满足奥运会高效率的开通需求。
|
14天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
23天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
1月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
189 15
|
16天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。

热门文章

最新文章