当神经网络训练好以后我们得到了什么?

简介: 理解神经网络训练

image.png
神经网络在训练的过程中,学习了很多参数,通常也被称作 权重矩阵W.
在CNN等网络中, 前面的基层卷积层的参数可视化后,可以看到训练图片的一些关键组件.
image.png
通常我们可以理解为纹理.
如果,我们训练的网络不是CNN,而是TCN/DeepFM/GCN等没有明确视觉含义的数据呢?
这时候,网络学会的到底是什么呢?

我们可以从一对向量的点积来寻找线索. 我们假设向量已经做了LayerNormalization,那么很容易得到 当两个向量一摸一样的时候, 其点积是最大的.

让我们再看下下面这张图所代表的一个普通4层MLP:
image.png
对于第二层任意神经元来说, 其输入,就是第一层输出向量X点积该神经元所有输入连接的权重W,这里忽略偏置量b.
X和W的点积,在两者标准化的情况下, X和W越接近,其点积越大,越可能越过激活函数的爬升段,表现为该神经元越可能激活.

到此,我们虽然设置了一些约束条件, 但是,已经可以断定,神经网络训练的过程, 就是学习很多不同的模式,以及模式的模式的过程, 并不断根据反向传播的梯度调整模式的样式.

一句话,神经网络就是一个模式匹配器.

目录
相关文章
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
581 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
4月前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
903 56
|
2月前
|
机器学习/深度学习 数据可视化 网络架构
PINN训练新思路:把初始条件和边界约束嵌入网络架构,解决多目标优化难题
PINNs训练难因多目标优化易失衡。通过设计硬约束网络架构,将初始与边界条件内嵌于模型输出,可自动满足约束,仅需优化方程残差,简化训练过程,提升稳定性与精度,适用于气候、生物医学等高要求仿真场景。
348 4
PINN训练新思路:把初始条件和边界约束嵌入网络架构,解决多目标优化难题
|
8月前
|
机器学习/深度学习 存储 算法
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
反向传播算法虽是深度学习基石,但面临内存消耗大和并行扩展受限的问题。近期,牛津大学等机构提出NoProp方法,通过扩散模型概念,将训练重塑为分层去噪任务,无需全局前向或反向传播。NoProp包含三种变体(DT、CT、FM),具备低内存占用与高效训练优势,在CIFAR-10等数据集上达到与传统方法相当的性能。其层间解耦特性支持分布式并行训练,为无梯度深度学习提供了新方向。
342 1
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
399 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
10月前
|
机器学习/深度学习 文件存储 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
1127 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
|
10月前
|
机器学习/深度学习 数据可视化 API
DeepSeek生成对抗网络(GAN)的训练与应用
生成对抗网络(GANs)是深度学习的重要技术,能生成逼真的图像、音频和文本数据。通过生成器和判别器的对抗训练,GANs实现高质量数据生成。DeepSeek提供强大工具和API,简化GAN的训练与应用。本文介绍如何使用DeepSeek构建、训练GAN,并通过代码示例帮助掌握相关技巧,涵盖模型定义、训练过程及图像生成等环节。
|
10月前
|
机器学习/深度学习 文件存储 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
265 1
|
12月前
|
人工智能 搜索推荐 决策智能
不靠更复杂的策略,仅凭和大模型训练对齐,零样本零经验单LLM调用,成为网络任务智能体新SOTA
近期研究通过调整网络智能体的观察和动作空间,使其与大型语言模型(LLM)的能力对齐,显著提升了基于LLM的网络智能体性能。AgentOccam智能体在WebArena基准上超越了先前方法,成功率提升26.6个点(+161%)。该研究强调了与LLM训练目标一致的重要性,为网络任务自动化提供了新思路,但也指出其性能受限于LLM能力及任务复杂度。论文链接:https://arxiv.org/abs/2410.13825。
228 12
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
440 8

热门文章

最新文章