千万商家的智能决策引擎--AnalyticDB如何助力生意参谋双十一

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 生意参谋是阿里官方打造的全渠道、全链路、一站式数据平台,致力于为用户提供经营分析、市场洞察、客群洞察等多样化数据服务,帮助用户全面提升商业决策效率。多种多样的分析需求对生意参谋的架构提出了巨大的挑战,借助于云原生数据仓库AnalyticDB MySQL的强大能力,生意参谋与QuickBI团队强强联合,打造了“商家自助分析”产品,帮助商家定制自己的数据报表,满足商家对自身各维度数据进行随心所欲的分析需求,帮助千万商家实现“数据价值在线化”。

作者:算法&健兮,阿里巴巴数据技术及产品部技术专家

生意参谋介绍

生意参谋是阿里官方打造的全渠道、全链路、一站式数据平台,致力于为用户提供经营分析、市场洞察、客群洞察等多样化数据服务,帮助用户全面提升商业决策效率。自2011年诞生以来,生意参谋服务过的用户已逾3000万,覆盖了线上线下零售商(淘宝天猫)、品牌商(零售通)、智慧门店、内贸批发商(1688)、内容创作者(微淘等)、东南亚国际商家(LAZADA)等多个业态商业用户。 目前,淘宝天猫商家中,月有交易的商家,99%以上都在使用生意参谋。
生意参谋经过将近十年的发展,已经支撑了99%淘宝天猫商家的决策运营,在如此庞大的商家群体下,每个商家对于数据的诉求都不一样
• 对于中大型商家,有自己的数据分析师团队,更希望自己对原始数据进行加工与展示,
• 对于中小型商家希望可以提供更加方便的一键式服务
• 对于一些品牌商,希望看到长达数年的历史数据分析
多种多样的分析需求对生意参谋的架构提出了巨大的挑战,借助于云原生数据仓库AnalyticDB MySQL的强大能力,生意参谋与QuickBI团队强强联合,打造了“商家自助分析”产品,帮助商家定制自己的数据报表,满足商家对自身各维度数据进行随心所欲的分析需求,帮助千万商家实现“数据价值在线化”。

商家分析的业务挑战

1)海量数据高并发复杂查询

生意参谋服务几百万商家,数据量是非常庞大的,如果存储3年数据,仅一个商品维度数据表,就能到千亿条记录。但是我们要满足商家对这些数据表,进行任意维度的数据查询、筛选、关联、聚合、计算、排序等操作,并且要求毫秒级返回。例双十一期间我们的复杂查询QPS超过300,在这种高并发低延时场景下对数据库带来巨大的挑战。

2)在线查询和批处理混合负载

为了降低成本,生意参谋“商家自助分析”产品不能将所有的商家数据全部写入分析库,需要对订购的商家需要在商家当天回补所有的历史数据,要求单商家6000W数据分钟级完成商家历史数据回补。在数据回补时,高并发查询与写入要求同时运行,相互不影响,对分析库的混合负载要求很高。

3)任意维度的灵活报表能力

生意参谋“商家自助分析”产品的根本需求是满足商家各式各样的分析需求,需要为商家可以提供灵活配置报表的能力,这时候一个成熟的BI解决方案必不可少。

4)商家数据安全性要求高

商家对于自身的数据安全要求非常高,生意参谋“商家自助分析”产品既要让商家能够随心所欲的进行数据分析,又要避免数据的泄露,也要防止数据被爬取、防止水平越权泄露。

全套成熟BI方案 - AnalyticDB + QuickBI

生意参谋选择了 AnalyticDB(以下简称ADB) + QuickBI 一整套成熟的BI解决方案。

QuickBI介绍

Quick BI是阿里云成熟的自助分析报表平台,是国内首个且唯一入选Gartner魔力象限的BI产品。产品经过几年的沉淀已无缝对接各类云上数据库和自建数据库,0代码鼠标拖拽式操作,让业务用户也能一键轻松实现海量数据可视化分析。并且QuickBI提供弹内部署能力,可以通过生意参谋为入口,对商家提供统一的服务。让商家在产品心智上感受到,一个数据分析平台,没有考虑系统间切换的问题。真正实现一个平台,满足用户数据分析需求。

AnalyticDB云原生数据仓库

AnalyticDB是阿里云自研的云原生数仓库,全面兼容MySQL语法,为分析而生,拥有出色的分析性能。
image.png

1)MySQL兼容,好用是数据库价值真正的体现,AnalyticDB高度兼容MySQL,基本无需修改代码即可像使用MySQL一样使用AnalyticDB,迁移使用成本极低。对于MySQL社区周边工具也可以无缝接入,因此和QuickBI的配合就像使用MySQL一样简单。
2)高性能高并发,AnalyticDB为分析而生,拥有业界最快的查询性能,通过行列混存、自适应索引,结合向量化的分布式执行引擎实现大部分查询复杂可以在毫秒级完成;同时通过在线化的调度和云原生的弹性扩展能力,可以支持大量商家的在线并发访问。
3)混合负载,在存储计算分离的架构下,AnalyticDB可以混合计算负载能力,在经典的在线(online)/交互式(interactive)查询执行模式之外,也支持了离线/批处理(batch)查询执行模式。因此针对在大量商家高并发在线查询的同时,同时可以进行并发的数据写入、加载和回补,实现业务一套系统的混合负载处理。
4)安全可靠,AnalyticDB基于云原生的VPC网络构建,同时对数据有库、表、列等多级权限保护,同时还支持通过内容数据的加解密,可以满足商家数据的安全性要求。
总结下,AnalyticDB可以从任意维度进行查询、筛选、聚合、计算、排序等操作,性能支持亚秒返回,并且支持实时写入,支持大型ETL与高并发查询混合负载等特性非常契合商家自助分析业务。并且,QuickBI 完美支持AnalyticDB作为数据源头,与商家自助分析业务完美契合。

生意参谋业务架构

生意参谋自助服务的本质是一套安全可靠,稳定灵活的BI方案。在底层,生意参谋将订购商家数据存放在AnalyticDB中,依托于AnalyticDB + QuickBI的生态,建立商家项目空间,同时打通生意参谋与QuickBI权限体系,支撑起商家自助分析需求。
image.png

数据同步

生意参谋自助分析,借助AnalyticDB支持高吞吐实时写入的特性,通过订购当天回补历史数据的方式, 解决了客户对于长周期数据的分析诉求。对于新订阅用户,需要将历史数据按天级别增量同步至AnalyticDB中,这个是系统设计的一个难点。借助AnalyticDB实时数据写入的能力,我们设计了自助分析-数据增量同步方案,有效解决了历史数据的增量同步。
image.png

业务价值

所有自助分析自定义配置的报表,都可以选择配置到生意参谋首页,这样商家的所有子账号,都能在生意参谋首页看到,真正达到了用户定制生意参谋页面能力的效果。其中我们通过店铺经营分析,店铺流量分析,单品深度洞察报告等BI模板,吸引了大量商家自助配置自己的BI报表。
image.png
image.png

未来展望

未来我们希望可以继续在数据价值上的探索,希望持续与AnalyticDB + QuickBI保持共建,推动数据价值在线化,让商家数据分析更加简单高效。

业务资源隔离

在 AnalyticDB MySQL版新推出的弹性形态下实现了资源组功能,通过新建资源组可以从现有实例划分出部分计算节点,这些计算节点资源只归属该资源组。用户可将数据库账号绑定到不同的资源组,SQL查询时根据绑定关系自动路由至对应的资源组执行,满足用户实现内部多租户隔离需求。我们对于不同的大商家,可以进行隔离,确保大商家业务的稳定性,提供更好的业务体验。

查询负载管理

在自助BI的系统中一直存在一个痛点,单个用户配置了不合理的报表,读取超大量的数据,进行超出预期的计算,影响其他商家的报表展示,为此我们在系统中需要做诸多限制,比如用户报表只能基于单表,不可以做多表联合分析,这样大大限制了商家报表的灵活性。为此我们期望AnalyticDB提负载管理的能力,通过我们指定查询资源消耗,读取数据消耗等维度限制,来对查询进行 KILL,切换资源组等行为,保障数据库稳定性。

智能化诊断

需要做好监控和边界问题的发现机制,在出现问题时能够快速定位。期望能够充分利用AnalyticDB的监控能力,在出现问题前第一时间预警,规避问题的发生。为此,AnalyticDB将提供全方位、多维度以及准实时的实例运行状况洞察能力,通过对实例内部的各类运行日志和时序指标进行算法建模,提供出问题前准确预测、出问题时及时告警、处理问题时精准定位的能力,确保不影响用户上层业务。

随时欢迎技术圈的小伙伴们过来交流^_^
AnalyticDB详情见:产品详情
AnalyticDB知乎公众号:云原生数据仓库
AnalyticDB开发者社区公众号:云原生数据仓库
AnalyticDB开发者钉钉群:23128105
image.png

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
存储 人工智能 OLAP
LangChain+通义千问+AnalyticDB向量引擎保姆级教程
本文以构建AIGC落地应用ChatBot和构建AI Agent为例,从代码级别详细分享AI框架LangChain、阿里云通义大模型和AnalyticDB向量引擎的开发经验和最佳实践,给大家快速落地AIGC应用提供参考。
129199 94
|
SQL 存储 OLAP
适用于即席查询(Ad-Hoc)的OLAP引擎
即席查询(Ad Hoc)是用户根据自己的需求,灵活的选择查询条件,OLAP系统根据用户输入的查询条件实时返回查询结果。OLAP的即席查询与普通查询的不同之处就是很难对前者进行预先的优化,因为即席查询所响应的大都是随机性很强的查询请求。一个OLAP系统的即席查询能力越强,其应对不同用户的随机性和探索性分析的能力就越强。
427 0
适用于即席查询(Ad-Hoc)的OLAP引擎
|
1月前
|
人工智能 数据挖掘 数据库
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
|
16天前
|
人工智能 自然语言处理 关系型数据库
客户说|宝宝树选用AnalyticDB RAG引擎,共创智能母婴生活新范式
宝宝树与阿里云深度合作,利用大数据和AI技术,推出了一系列智能化产品,如AI解读B超单、AI起名等,覆盖备孕、孕期、产后等场景,提升了用户体验,推动了商业化进程。通过技术架构的优化,宝宝树在内容生产和搜索精度上取得了显著成效,未来将继续深化“AI+母婴”战略,为用户提供更全面、个性化的服务。
|
1月前
|
人工智能 数据库 决策智能
拥抱Data+AI|如何破解电商7大挑战?DMS+AnalyticDB助力企业智能决策
本文为阿里云瑶池数据库「拥抱Data+AI」系列连载第1篇,聚焦电商行业痛点,探讨如何利用数据与AI技术及分析方法论,为电商注入新活力与效能。文中详细介绍了阿里云Data+AI解决方案,涵盖Zero-ETL、实时在线分析、混合负载资源隔离、长周期数据归档等关键技术,帮助企业应对数据在线重刷、实时分析、成本优化等挑战,实现智能化转型。
拥抱Data+AI|如何破解电商7大挑战?DMS+AnalyticDB助力企业智能决策
|
5月前
|
Cloud Native 关系型数据库 新能源
|
存储 人工智能 关系型数据库
5倍性能提升,阿里云AnalyticDB PostgreSQL版新一代实时智能引擎重磅发布
2023 云栖大会上,AnalyticDB for PostgreSQL新一代实时智能引擎重磅发布,全自研计算和行列混存引擎较比开源Greenplum有5倍以上性能提升。AnalyticDB for PostgreSQL与通义大模型家族深度集成,推出一站式AIGC解决方案。阿里云新发布的行业模型及“百炼”平台,采用AnalyticDB for PostgreSQL作为内置向量检索引擎,性能较开源增强了2~5倍。大会上来自厦门国际银行、三七互娱等知名企业代表和瑶池数据库团队产品及技术资深专家们结合真实场景实践,深入分享了最新的技术进展和解析。
5倍性能提升,阿里云AnalyticDB PostgreSQL版新一代实时智能引擎重磅发布
|
人工智能 关系型数据库 OLAP
|
运维 关系型数据库 OLAP
阿里云百炼 x AnalyticDB向量引擎, 搭积木式轻松开发专属大模型应用
对大模型应用跃跃欲试,但奈何技术栈复杂难以下手?已经进行试水,但缺乏调优手段无法保障召回率和问答准确度?自行搭建大模型、向量检索引擎、服务API等基础组件难以运维?大模型种类繁多,但缺乏行业模型和应用模板?阿里云百炼 x AnalyticDB向量引擎推出一站式企业专属大模型开发和应用平台,像搭积木一样轻松完成企业专属大模型应用的开发,提供应用API,可一键接入企业自己的业务应用对外提供服务。
1199 0
|
存储 分布式计算 算法
VLDB论文解读,业界首个自研智能信息传递系统,AnalyticDB Anser框架技术详解
论文提出了一个动态信息传递框架,及一个基于信息流依赖的自适应调度器,来进行执行中长查询的智能优化,有效提升查询性能

热门文章

最新文章