Python 自动化测试(三): pytest 参数化测试用例构建

简介: 本文节选自霍格沃玆测试学院内部教材,文末链接进阶学习。在之前的文章中主要分享了 pytest 的实用特性,接下来讲 Pytest 参数化用例的构建。

本文节选自霍格沃玆测试学院内部教材,文末链接进阶学习。

在之前的文章中主要分享了 pytest 的实用特性,接下来讲 Pytest 参数化用例的构建。

如果待测试的输入与输出是一组数据,可以把测试数据组织起来用不同的测试数据调用相同的测试方法。参数化顾名思义就是把不同的参数,写到一个集合里,然后程序会自动取值运行用例,直到集合为空便结束。pytest 中可以使用 @pytest.mark.parametrize 来参数化。

使用 parametrize 实现参数化

parametrize( ) 方法源码:

def parametrize(self,argnames, argvalues, indirect=False, ids=None, \
    scope=None):
  • 主要参数说明

    • argsnames :参数名,是个字符串,如中间用逗号分隔则表示为多个参数名
    • argsvalues :参数值,参数组成的列表,列表中有几个元素,就会生成几条用例
  • 使用方法

    • 使用 @pytest.mark.paramtrize() 装饰测试方法
    • parametrize('data', param) 中的 “data” 是自定义的参数名,param 是引入的参数列表
    • 将自定义的参数名 data 作为参数传给测试用例 test_func
    • 然后就可以在测试用例内部使用 data 的参数了

创建测试用例,传入三组参数,每组两个元素,判断每组参数里面表达式和值是否相等,代码如下:

@pytest.mark.parametrize("test_input,expected",[("3+5",8),("2+5",7),("7*5",30)])
def test_eval(test_input,expected):
    # eval 将字符串str当成有效的表达式来求值,并返回结果
    assert eval(test_input) == expected

运行结果:

plugins: html-2.0.1, rerunfailures-8.0, xdist-1.31.0, ordering-0.6, \
forked-1.1.3, allure-pytest-2.8.11, metadata-1.8.0
collecting ... collected 3 items

test_mark_paramize.py::test_eval[3+5-8] 
test_mark_paramize.py::test_eval[2+5-7] 
test_mark_paramize.py::test_eval[7*5-35] 

============================== 3 passed in 0.02s ===============================

整个执行过程中,pytest 将参数列表 [("3+5",8),("2+5",7),("7*5",30)] 中的三组数据取出来,每组数据生成一条测试用例,并且将每组数据中的两个元素分别赋值到方法中,作为测试方法的参数由测试用例使用。

多次使用 parametrize

同一个测试用例还可以同时添加多个 @pytest.mark.parametrize 装饰器, 多个 parametrize 的所有元素互相组合(类似笛卡儿乘积),生成大量测试用例。

场景:比如登录场景,用户名输入情况有 n 种,密码的输入情况有 m 种,希望验证用户名和密码,就会涉及到 n*m 种组合的测试用例,如果把这些数据一一的列出来,工作量也是非常大的。pytest 提供了一种参数化的方式,将多组测试数据自动组合,生成大量的测试用例。示例代码如下:

@pytest.mark.parametrize("x",[1,2])
@pytest.mark.parametrize("y",[8,10,11])
def test_foo(x,y):
    print(f"测试数据组合x: {x} , y:{y}")

运行结果:

plugins: html-2.0.1, rerunfailures-8.0, xdist-1.31.0, ordering-0.6,\
 forked-1.1.3, allure-pytest-2.8.11, metadata-1.8.0
collecting ... collected 6 items

test_mark_paramize.py::test_foo[8-1] 
test_mark_paramize.py::test_foo[8-2] 
test_mark_paramize.py::test_foo[10-1] 
test_mark_paramize.py::test_foo[10-2] 
test_mark_paramize.py::test_foo[11-1] 
test_mark_paramize.py::test_foo[11-2] 

分析如上运行结果,测试方法 test_foo( ) 添加了两个 @pytest.mark.parametrize() 装饰器,两个装饰器分别提供两个参数值的列表,2 * 3 = 6 种结合,pytest 便会生成 6 条测试用例。在测试中通常使用这种方法是所有变量、所有取值的完全组合,可以实现全面的测试。

@pytest.fixture 与 @pytest.mark.parametrize 结合

下面讲结合 @pytest.fixture 与 @pytest.mark.parametrize 实现参数化。

如果测试数据需要在 fixture 方法中使用,同时也需要在测试用例中使用,可以在使用 parametrize 的时候添加一个参数 indirect=True,pytest 可以实现将参数传入到 fixture 方法中,也可以在当前的测试用例中使用。

parametrize 源码:

def parametrize(self,argnames, argvalues, indirect=False, ids=None, scope=None):

indirect 参数设置为 True,pytest 会把 argnames 当作函数去执行,将 argvalues 作为参数传入到 argnames 这个函数里。创建“test_param.py”文件,代码如下:

# 方法名作为参数
test_user_data = ['Tome', 'Jerry']
@pytest.fixture(scope="module")
def login_r(request):
    # 通过request.param获取参数
    user = request.param
    print(f"\n 登录用户:{user}")
    return user

@pytest.mark.parametrize("login_r", test_user_data,indirect=True)
def test_login(login_r):
    a = login_r
    print(f"测试用例中login的返回值; {a}")
    assert a != ""

运行结果:

plugins: html-2.0.1, rerunfailures-8.0, xdist-1.31.0, ordering-0.6,\
 forked-1.1.3, allure-pytest-2.8.11, metadata-1.8.0
collecting ... collected 2 items

test_mark_paramize.py::test_login[Tome] 
test_mark_paramize.py::test_login[Jerry] 

============================== 2 passed in 0.02s ===============================

Process finished with exit code 0

 登录用户:Tome PASSED           [ 50%]测试用例中login的返回值; Tome

 登录用户:Jerry PASSED           [100%]测试用例中login的返回值; Jerry

上面的结果可以看出,当 indirect=True 时,会将 login_r 作为参数,test_user_data 被当作参数传入到 login_r 方法中,生成多条测试用例。通过 return 将结果返回,当调用 login_r 可以获取到 login_r 这个方法的返回数据。

更多技术文章分享及测试资料点此获取

相关文章
|
2月前
|
监控 jenkins 测试技术
自动化测试框架的构建与实践
【10月更文挑战第40天】在软件开发周期中,测试环节扮演着至关重要的角色。本文将引导你了解如何构建一个高效的自动化测试框架,并深入探讨其设计原则、实现方法及维护策略。通过实际代码示例和清晰的步骤说明,我们将一起探索如何确保软件质量,同时提升开发效率。
62 1
|
2月前
|
测试技术 开发者 Python
自动化测试之美:从零构建你的软件质量防线
【10月更文挑战第34天】在数字化时代的浪潮中,软件成为我们生活和工作不可或缺的一部分。然而,随着软件复杂性的增加,如何保证其质量和稳定性成为开发者面临的一大挑战。自动化测试,作为现代软件开发过程中的关键实践,不仅提高了测试效率,还确保了软件产品的质量。本文将深入浅出地介绍自动化测试的概念、重要性以及实施步骤,带领读者从零基础开始,一步步构建起属于自己的软件质量防线。通过具体实例,我们将探索如何有效地设计和执行自动化测试脚本,最终实现软件开发流程的优化和产品质量的提升。无论你是软件开发新手,还是希望提高项目质量的资深开发者,这篇文章都将为你提供宝贵的指导和启示。
|
3月前
|
安全 Linux 网络安全
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(一)
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(一)
84 2
|
3月前
|
Python Windows 网络安全
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(二)
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(二)
101 2
|
1月前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
2月前
|
jenkins 测试技术 持续交付
自动化测试框架的构建与优化:提升软件交付效率的关键####
本文深入探讨了自动化测试框架的核心价值,通过对比传统手工测试方法的局限性,揭示了自动化测试在现代软件开发生命周期中的重要性。不同于常规摘要仅概述内容,本部分强调了自动化测试如何显著提高测试覆盖率、缩短测试周期、降低人力成本,并促进持续集成/持续部署(CI/CD)流程的实施,最终实现软件质量和开发效率的双重飞跃。通过具体案例分析,展示了从零开始构建自动化测试框架的策略与最佳实践,包括选择合适的工具、设计高效的测试用例结构、以及如何进行性能调优等关键步骤。此外,还讨论了在实施过程中可能遇到的挑战及应对策略,为读者提供了一套可操作的优化指南。 ####
|
2月前
|
敏捷开发 监控 测试技术
探索自动化测试框架的构建与优化####
在软件开发周期中,自动化测试扮演着至关重要的角色。本文旨在深入探讨如何构建高效的自动化测试框架,并分享一系列实用策略以提升测试效率和质量。我们将从框架选型、结构设计、工具集成、持续集成/持续部署(CI/CD)、以及最佳实践等多个维度进行阐述,为软件测试人员提供一套系统化的实施指南。 ####
|
2月前
|
JSON 测试技术 持续交付
自动化测试与脚本编写:Python实践指南
自动化测试与脚本编写:Python实践指南
56 1
|
2月前
|
Web App开发 测试技术 数据安全/隐私保护
自动化测试的魔法:使用Python进行Web应用测试
【10月更文挑战第32天】本文将带你走进自动化测试的世界,通过Python和Selenium库的力量,展示如何轻松对Web应用进行自动化测试。我们将一起探索编写简单而强大的测试脚本的秘诀,并理解如何利用这些脚本来确保我们的软件质量。无论你是测试新手还是希望提升自动化测试技能的开发者,这篇文章都将为你打开一扇门,让你看到自动化测试不仅可行,而且充满乐趣。
|
3月前
|
测试技术 Python
自动化测试项目学习笔记(三):Unittest加载测试用例的四种方法
本文介绍了使用Python的unittest框架来加载测试用例的四种方法,包括通过测试用例类、模块、路径和逐条加载测试用例。
124 0
自动化测试项目学习笔记(三):Unittest加载测试用例的四种方法

热门文章

最新文章