Redis 常见问题及优化

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Redis 常见问题及优化

Redis 常见问题及优化

在这里插入图片描述

1. fork操作

fork操作耗时的问题:

  • fork是个同步操作,虽然fork同步操作是非常快的,但是如果需要同步的数据量过大,fork就会阻塞redis主进程。
  • 与内存息息相关 :内存越大,耗时越长(与机器类型相关)
  • 查询持久化执行时间: late_fork_usec

改善fork

  • 有限使用物理机或者高效支持fork 操作的虚拟化技术
  • 控制Redis实例最大可用内存 : maxmenory
  • 合理配置Linux内存分配策略:vm.overcommit_memory = 1
  • 降低fork 频率:例如放宽AOF 重写自动触发时机,不必要的全量复制

2. 进程外开销

CPU:

  • 开销:RDB 和 AOF文件生成,属于CPU密集型
  • 优化:不做CPU绑定,不和CPU 密集型部署

内存:

  • 开销:fork内存开销,copy-on-write
  • 优化:echo never > /sys/kernel/mm/transparent_hugepage/enabled

硬盘:

  • 开销:AOF和RDB文件写入,可以结合iostat, iotop分析
  • 优化 :
  1. 不要和高硬盘负载服务器一起部署,队列,存储服务等
  2. no-appendfsync-on-rewrite= yes
  3. 根据写入量决定磁盘类型:例如ssd
  4. 单机多实例持久化文件目录可以考虑分盘

3. AOF追加阻塞

在这里插入图片描述

在这里插入图片描述

127.0.0.1:6379 > info persistence

-----
aof_delayed_fsync : 100   //aof阻塞等次数  会进行 +1操作
-----
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1天前
|
缓存 NoSQL JavaScript
Vue.js应用结合Redis数据库:实践与优化
将Vue.js应用与Redis结合,可以实现高效的数据管理和快速响应的用户体验。通过合理的实践步骤和优化策略,可以充分发挥两者的优势,提高应用的性能和可靠性。希望本文能为您在实际开发中提供有价值的参考。
21 11
|
13天前
|
存储 监控 NoSQL
NoSQL与Redis配置与优化
通过合理配置和优化Redis,可以显著提高其性能和可靠性。选择合适的数据结构、优化内存使用、合理设置持久化策略、使用Pipeline批量执行命令、以及采用分布式集群方案,都是提升Redis性能的重要手段。同时,定期监控和维护Redis实例,及时调整配置,能够确保系统的稳定运行。希望本文对您在Redis的配置与优化方面有所帮助。
58 23
|
14天前
|
存储 监控 NoSQL
NoSQL与Redis配置与优化
通过合理配置和优化Redis,可以显著提高其性能和可靠性。选择合适的数据结构、优化内存使用、合理设置持久化策略、使用Pipeline批量执行命令、以及采用分布式集群方案,都是提升Redis性能的重要手段。
39 7
|
3月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
158 9
|
3月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
149 5
|
3月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万数据量的优化实录
【10月更文挑战第6天】 在现代互联网应用中,随着用户量的增加和业务逻辑的复杂化,数据量级迅速增长,这对后端数据库系统提出了严峻的挑战。尤其是当数据量达到百万级别时,传统的数据库解决方案往往会遇到性能瓶颈。本文将分享一次使用MySQL与Redis协同优化大规模数据统计的实战经验。
227 3
|
3月前
|
NoSQL 关系型数据库 BI
记录一次MySQL+Redis实现优化百万数据统计的方式
【10月更文挑战第13天】 在处理百万级数据的统计时,传统的单体数据库往往力不从心,这时结合使用MySQL和Redis可以显著提升性能。以下是一次实际优化案例的详细记录。
235 1
|
7月前
|
存储 缓存 NoSQL
redis缓存优化
采用获取一次缓存,如果为空的情况,获取分布式锁,让一个线程去重建缓存,另外的线程未获取到锁的情况,休眠短时间,然后再自旋获取缓存。
70 0
|
5月前
|
存储 缓存 NoSQL
Redis 7.0如何优化缓存命中率?
优化Redis缓存命中率的关键策略包括:合理设计键值结构以节省内存并提高查找效率,如使用哈希表存储共享前缀的键;采用LRU算法淘汰不常用键,保持热门数据;优化查询模式,避免大键与大量小键,使用`SCAN`代替`KEYS`减少负载;为临时数据设置过期时间自动清理;监控性能并适时调整策略;利用不同数据类型的优势;使用Pipeline减少网络延迟;限制键扫描范围;优化Lua脚本执行效率;以及根据应用场景合理配置Redis参数。这些方法有助于提升Redis性能和缓存效率。
|
6月前
|
存储 缓存 NoSQL
Redis 缓存常见问题
Redis 缓存常见问题
66 3