为什么说机器学习是预防欺诈的最佳工具?

简介: 随着现代技术的发展和完善,生活变得越来越舒适。虽然以前人们认为同时进行复杂的操作是不可能的,而如今计算机使这一任务变得很容易了。

--------点击屏幕右侧或者屏幕底部“+订阅”,关注我,随时分享机器智能最新行业动态及技术干货----------

2.png

随着现代技术的发展和完善,生活变得越来越舒适。虽然以前人们认为同时进行复杂的操作是不可能的,而如今计算机使这一任务变得很容易了。

与此同时,利用间谍软件、勒索软件和其他非法应用程序来非法访问计算机的方法也变得十分猖獗。黑客利用各种工具来影响网络的运行并窃取人们的数据。

欺诈手段也很普遍。在某些情况下,欺诈的设计非常出色,以至于人们无法区分真假。而人工智能经常被用来应对这些威胁,在这篇文章中,作者将讲述为什么机器学习是预防欺诈的优秀工具。

银行账户属于高风险群体

大量的现金流,数十亿笔交易以及数百万客户的付款交易为黑客入侵人们的银行帐户创造了有利条件。欺诈者的行为不仅造成直接的物质损失,还会破坏金融机构的信誉,严重损害了银行的声誉。

如今,针对性攻击的数量显著增加,其中可以选择特定的受害者,并且攻击本身是由专门从事特定类型活动的各种攻击者团体精心准备和实施的:开发和销售恶意代码,破坏通信渠道 ,导致出现了新的欺诈方案。

通过影响银行系统的方法,欺诈被分为外部和内部两种,其中包括银行员工。欺诈也可以分为以下几种实施渠道:银行分支机构——非法执行账户支出业务、欺诈赔偿、付款、退款、临时借用资金、定期账户的非法操作、倒转;银行卡和支付卡——刷卡(在支付终端和ATM中卡被盗用)、CNP欺诈(未持卡,网上购物卡数据被盗用);网络钓鱼——虚假陈述客户进行交易的行为;远程银行服务——破坏渠道、更改客户信息、未经授权的转账、更改付款订单中收款人的详细信息等。

由于服务渠道的特征、折衷方法、合成被盗数据等,每个欺诈计划都有其准备、出售、提取和套现现金的行为。

反欺诈系统是预防欺诈的优秀工具

防范外部和内部欺诈最有效的方法是使用反欺诈系统,该系统可以控制银行客户的付款和会话交易,评估银行员工的行为,快速识别各种服务渠道中的新型欺诈计划,并防止从客户帐户中提取资金。

这也适用于其他行业,尤其是那些欺诈率很高的行业。例如,让我们以加密货币行业为例。据说,2018 年至 2019 年之间发生的所有 ICO 中有 80% 是欺诈性的。这就产生了一个前提,即每个加密货币项目都是骗局。我们非常清楚这与事实相差甚远。

如今,欺诈检测 AI 被用于确认欺诈指控,而不是找到它们。例如,在比特币演变骗局期间,该公司聘请了几位人工智能专家来让算法查看公司的活动。最终,人工智能成功地为该公司开脱了指控,事实证明,这比专业人士的话更可信。

反欺诈系统的主要特性是能够聚合各种来源的大量数据,这允许你能够在不同的渠道中查看客户和员工行为的上下文中的操作。反欺诈系统的主要目标有以下几点:

  • 分析和处理在各种系统中进行的金融和非金融交易流;
  • 应用业务规则和算法来检测可疑活动;
  • 识别客户或员工异常的行为模式;
  • 识别一系列有欺诈迹象的事件;
  • 提供方便的工具来调查和分析数据。

专家系统也被广泛用于检测欺诈交易,其中包含许多旨在识别可疑交易的统计规则和逻辑表达式,但是这种方法有几个缺点。

为什么机器学习被证明是防止欺诈的有效方法?

机器学习方法和统计规则的使用有助于降低与专家系统的局限性相关的风险,特别是减少将合法交易被错误识别为欺诈交易的案例数量,并增加成功检测到的真正欺诈行为的数量。机器学习算法可以检测到人类不明显的依赖关系,从而快速分析大量数据。

为了检测欺诈,在有老师(监督学习)和没有老师(无监督学习)的情况下都使用了学习算法。在第一种情况下,当有一个训练样本具有先前已知的答案时,我们主要讨论的是分类算法。而在第二种情况下,则没有这样的答案。跨国序列可视为文本,然后出现了文本数据分析和处理自然语言(NLP)的方法。

为了使分类算法起作用,就必须有一个数据集,例如,在一段有限的时间内,确认存在欺诈和合法的交易。然而,在标记交易时,不可避免地会出现困难:通常需要根据从用于构建模型的欺诈调查行为中获取的信息手动进行标记。欺诈交易的样本也可以通过调查文件的机器解析来获得,但是由于其结构较差且质量较好,因此很难实现这种样本。

当与老师一起学习时,阶级失衡是不可避免的:合法交易的数量是欺诈交易的数十万倍。在这种情况下,可以使用以下方法:数据平衡;过滤;通过“重新标记”额外交易来丰富样本,专家认为这种交易很可能是欺诈行为。此外,还使用了半监督学习方法,该方法既使用已知是否为欺诈的交易,也使用了未知的交易。

结论

在解决欺诈检测问题时,对数据进行全面的初步分析并选择正确的方法来构建和验证模型的有效性非常重要,否则可能需要重新训练模型。没有一种标准的解决方案可以同样适合于任何检测欺诈的任务——在每种情况下,都需要一个单独的方法来考虑到问题的所有特性和反欺诈系统的要求。

尽管机器不是优秀的机制,而且还会犯错误,但是它们是应对破坏银行、系统和各种网络正常运行欺诈的优秀工具。技术专家做了很多工作来进一步改善机器的操作,并使机器对威胁更加警惕。

image.png

文章来源:https://yqh.aliyun.com/detail/17550

目录
相关文章
|
15天前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
30 8
|
5月前
|
机器学习/深度学习 数据可视化 搜索推荐
Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。
【7月更文挑战第5天】Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。流程包括数据获取、预处理、探索、模型选择、评估与优化,以及结果可视化。示例展示了用户行为、话题趋势和用户画像分析。Python的丰富生态使得社交媒体洞察变得高效。通过学习和实践,可以提升社交媒体分析能力。
87 1
|
2月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
55 2
|
7月前
|
机器学习/深度学习 人工智能 PyTorch
《人工智能专栏》专栏介绍 & 专栏目录 & Python与Python | 机器学习 | 深度学习 | 目标检测 | YOLOv5及其改进 | YOLOv8及其改进 | 关键知识点 | 各种工具教程
《人工智能专栏》专栏介绍 & 专栏目录 & Python与Python | 机器学习 | 深度学习 | 目标检测 | YOLOv5及其改进 | YOLOv8及其改进 | 关键知识点 | 各种工具教程
192 1
|
6月前
|
机器学习/深度学习 边缘计算 TensorFlow
Python机器学习工具与库的现状,并展望其未来的发展趋势
【6月更文挑战第13天】本文探讨了Python在机器学习中的核心地位,重点介绍了Scikit-learn、TensorFlow、PyTorch等主流库的现状。未来发展趋势包括自动化、智能化的工具,增强可解释性和可信赖性的模型,跨领域融合创新,以及云端与边缘计算的结合。这些进展将降低机器学习门槛,推动技术在各领域的广泛应用。
79 3
|
5月前
|
机器学习/深度学习 XML 计算机视觉
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
|
机器学习/深度学习 算法 数据挖掘
ML |机器学习模型如何检测和预防过拟合?
ML |机器学习模型如何检测和预防过拟合?
190 0
|
7月前
|
机器学习/深度学习 边缘计算 TensorFlow
【Python机器学习专栏】Python机器学习工具与库的未来展望
【4月更文挑战第30天】本文探讨了Python在机器学习中的关键角色,重点介绍了Scikit-learn、TensorFlow和PyTorch等流行库。随着技术进步,未来Python机器学习工具将聚焦自动化、智能化、可解释性和可信赖性,并促进跨领域创新,结合云端与边缘计算,为各领域应用带来更高效、可靠的解决方案。
74 0
|
机器学习/深度学习 JSON 自然语言处理
阿里云PAI-灵骏大模型训练工具Pai-Megatron-Patch正式开源!
随着深度学习大语言模型的不断发展,其模型结构和量级在快速演化,依托大模型技术的应用更是层出不穷。对于广大开发者来说不仅要考虑如何在复杂多变的场景下有效的将大模型消耗的算力发挥出来,还要应对大模型的持续迭代。开发简单易用的大模型训练工具就成了应对以上问题广受关注的技术方向,让开发者专注于大模型解决方案的开发,降低大模型训练加速性能优化和训练/推理全流程搭建的人力开发成本。阿里云机器学习平台PAI开源了业内较早投入业务应用的大模型训练工具Pai-Megatron-Patch,本文将详解Pai-Megatron-Patch的设计原理和应用。
|
7月前
|
存储 机器学习/深度学习 人工智能
基于Megatron-Core的稀疏大模型训练工具:阿里云MoE大模型最佳实践
随着大模型技术的不断发展,模型结构和参数量级快速演化。大模型技术的应用层出不穷。大模型展现惊人效果,但训练和推理成本高,一直是巨大挑战。模型稀疏化能降低计算和存储消耗。近期以Mixtral为代表的MoE(多专家混合)大模型证明了稀疏MoE技术能大幅降低计算量、提升推理速度,模型效果甚至超过同规模稠密模型。阿里云PAI和NVIDIA团队深入合作,基于Megatron-Core MoE框架,解决了MoE大模型训练落地时会遇到的可拓展性、易用性、功能性以及收敛精度等核心问题,在下游任务上取得了很好的模型效果。