JVM内存管理、直接内存和垃圾回收

简介: 无论对于Java程序员还是大数据研发人员,JVM是必须掌握的技能之一。既是面试中经常问的问题,也是在实际业务中对程序进行调优、排查类似于内存溢出、栈溢出、内存泄漏等问题的关键

无论对于Java程序员还是大数据研发人员,JVM是必须掌握的技能之一。既是面试中经常问的问题,也是在实际业务中对程序进行调优、排查类似于内存溢出、栈溢出、内存泄漏等问题的关键。

笔者将按下图分多篇文章详细阐述JVM:
1.jpg

本篇文章主要叙述JVM内存管理、直接内存、垃圾回收和常见的垃圾回收算法:

运行时数据区域

JVM在执行一些基于JVM运行的程序,典型的如Java程序、Scala程序时,会把它所管理的内存划分为多个不同的数据区域。这些区域有各个的作用、创建和销毁时间,有的区域生命周期依赖于用户线程的启动和结束,有些区域则随着虚拟机的启动而存在,下图展示了JVM在运行时的数据区域划分:

2.jpg

1. 方法区

方法区是各个线程共享的内存区域,主要用于存放一些"自始至终都不会变化"的东西,比如final定义的常量、类的信息(class实例)、静态变量等、方法信息。因为这些东西一旦被加载,是几乎不会被GC的,所以方法区又被称为永久代(注意一点,二者本质并不等价)。

方法区有一部分叫常量池,用于存储编译期生成的一些字面变量、符号引用以及一些运行时产生的常量(如String常量池)。方法区中的静态区用于存放类变量、静态块等。

方法区又称非堆,是有大小限制的,如果方法区使用内存超过了分配的大小,就会报类似OutOfMemory: PermGen Space的错误。

2. Java虚拟机栈

Java 虚拟机栈是线程私有的,它的生命周期与线程相同,为虚拟机执行Java方法即字节码服务,是描述Java方法执行时的内存模型。

每个方法执行时都会创建一个栈帧用于存储局部变量表(比如编译期可知的基本数据类型、对象引用等)、操作栈、动态链接、方法出口等信息。每一个方法被调用至执行完成的过程,对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

如果线程请求的栈深度大于虚拟机所允许的深度,将会报StackOverFlowError;如果虚拟机栈无法申请到足够的内存时会报OutOfMemoryError。

调整虚拟机栈大小的方式:-Xss。

3. 本地方法栈

本地方法栈为使用的到Native方法服务,本地方法接口都会使用某种本地方法栈。

当线程调用Java方法时,虚拟机会创建一个新的栈帧并压入Java栈。然而,当它调用的是本地方法时,虚拟机会保持Java栈不变,不会在线程的Java栈中压入新的栈帧,而是动态连接并直接调用指定的本地方法。

4. 堆

堆是JVM管理内存中最大的一块区域,由Java线程共享,主要用来存储new出来的对象和数组,并且这块区域随着虚拟机的启动而创建。堆可以处于逻辑上连续但物理上不连续的内存空间中。

堆是垃圾回收器管理的主要区域,可以细分为新生代和老年代,新生代又划分为eden区,from survivor区、to survivor区。

对象在被创建时,首先在新生代进行分配,eden区存放新生成的对象,两个survivor区用来存放新生代中每次垃圾回收后依然存活下来的对象。但是当创建新创建的对象非常大,该对象会直接进入老年代。

3.png

5. 程序计数器

程序计数器是线程私有的即每个线程都会有自己的程序计数器,用来记录线程执行的字节码位置,是一个没有OOM的区域。

直接内存

直接内存(direct memory)不属于JVM运行时数据区的一部分,属于堆外内存,会被频繁使用,因此在设置各个内存范围时要留出一部分物理内存,否则也容易抛出OutOfMemoryError。

垃圾收集

垃圾收集即GC,是JVM进行内存回收的处理过程。

开发人员更多的是关注业务需求的实现,而内存管理是交由JVM完成的,如果不进行或者错误的进行垃圾回收会导致程序不稳定甚至崩溃。Java提供的GC功能可以自动监测对象是否超过作用域等从而达到自动回收内存的目的,可以有效防止内存泄露,有效的使用可用内存。

GC主要分为3种:minor GC、major GC和full GC。
minor GC是发生在新生代的,minor GC是发生在老年代的。对于full GC出发的原因则比较多,比如老年代空间不足,它会出发stop world,处理不好往往会影响整个程序的稳定性严重会导致系统不可用,需要特别注意。

常见的垃圾回收算法

1. 标记清除算法

首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。

存在如下两个缺点:

1.效率低

需要先对要回收的对象进行标记,然后再统一清除,然而标记和清除两个过程效率都很低下。

2.内存碎片问题

标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作,影响性能。

2. 复制算法

先将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当使用的这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。

优点:这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。

缺点:不适合对象存活率较高的场景,因为这种场景要进行较多的复制操作影响效率;实际可用内存变为分配内存的一半,因为每次只使用其中的一半内存。

3. 标记整理算法

先标记(标记过程与标记清除算法一样),让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。这样可以解决内存碎片问题。

4. 分代收集算法

就是针对Java堆内存中新生代、老年代等采用不同的垃圾回收算法。如在新生代中,往往只有少量对象存活(最后会进入老年代),则适合用复制算法。而老年代中对象存活率较高,没有额外的空间对它进行分配担保,就使用标记清除算法。

当然实际应用中,使用什么算法,要看使用的垃圾回收器

相关文章
|
5天前
|
监控 算法 Java
Java中的内存管理:理解垃圾回收机制的深度剖析
在Java编程语言中,内存管理是一个核心概念。本文将深入探讨Java的垃圾回收(GC)机制,解析其工作原理、重要性以及优化方法。通过本文,您不仅会了解到基础的GC知识,还将掌握如何在实际开发中高效利用这一机制。
|
5天前
|
存储 监控 算法
Java中的内存管理与垃圾回收机制解析
本文深入探讨了Java编程语言中的内存管理策略和垃圾回收机制。首先介绍了Java内存模型的基本概念,包括堆、栈以及方法区的划分和各自的功能。进一步详细阐述了垃圾回收的基本原理、常见算法(如标记-清除、复制、标记-整理等),以及如何通过JVM参数调优垃圾回收器的性能。此外,还讨论了Java 9引入的接口变化对垃圾回收的影响,以及如何通过Shenandoah等现代垃圾回收器提升应用性能。最后,提供了一些编写高效Java代码的实践建议,帮助开发者更好地理解和管理Java应用的内存使用。
|
11天前
|
监控 Java 大数据
【Java内存管理新突破】JDK 22:细粒度内存管理API,精准控制每一块内存!
【9月更文挑战第9天】虽然目前JDK 22的确切内容尚未公布,但我们可以根据Java语言的发展趋势和社区的需求,预测细粒度内存管理API可能成为未来Java内存管理领域的新突破。这套API将为开发者提供前所未有的内存控制能力,助力Java应用在更多领域发挥更大作用。我们期待JDK 22的发布,期待Java语言在内存管理领域的持续创新和发展。
|
7天前
|
存储 缓存 算法
Java中的内存管理:理解垃圾回收机制
本文将深入探讨Java中的内存管理,特别是垃圾回收机制。我们将从基本的内存分配开始,逐步解析垃圾回收的原理和过程,以及它对Java应用程序性能的影响。通过实例演示,我们会展示如何在Java中有效地管理和优化内存使用。最后,我们将讨论一些常见的内存泄漏问题及其解决方案。
|
11天前
|
存储 并行计算 算法
CUDA统一内存:简化GPU编程的内存管理
在GPU编程中,内存管理是关键挑战之一。NVIDIA CUDA 6.0引入了统一内存,简化了CPU与GPU之间的数据传输。统一内存允许在单个地址空间内分配可被两者访问的内存,自动迁移数据,从而简化内存管理、提高性能并增强代码可扩展性。本文将详细介绍统一内存的工作原理、优势及其使用方法,帮助开发者更高效地开发CUDA应用程序。
|
23天前
|
存储 监控 算法
内存泄漏还是高性能?深度揭秘.NET垃圾回收机制
【8月更文挑战第28天】垃圾回收是.NET框架中自动化内存管理的关键机制,它通过分代收集算法自动清理不再使用的对象,简化了开发者的内存管理工作。本文深入解析了垃圾回收器的工作原理、对象内存分配策略及优化技巧,并介绍了多种监控工具,帮助提升.NET应用性能与稳定性。掌握这些知识将使开发者能够更高效地管理内存,提高应用程序的运行效率。
25 3
|
28天前
|
Linux 测试技术 C++
内存管理优化:内存泄漏检测与预防。
内存管理优化:内存泄漏检测与预防。
34 2
|
6天前
|
监控 算法 数据可视化
深入解析Android应用开发中的高效内存管理策略在移动应用开发领域,Android平台因其开放性和灵活性备受开发者青睐。然而,随之而来的是内存管理的复杂性,这对开发者提出了更高的要求。高效的内存管理不仅能够提升应用的性能,还能有效避免因内存泄漏导致的应用崩溃。本文将探讨Android应用开发中的内存管理问题,并提供一系列实用的优化策略,帮助开发者打造更稳定、更高效的应用。
在Android开发中,内存管理是一个绕不开的话题。良好的内存管理机制不仅可以提高应用的运行效率,还能有效预防内存泄漏和过度消耗,从而延长电池寿命并提升用户体验。本文从Android内存管理的基本原理出发,详细讨论了几种常见的内存管理技巧,包括内存泄漏的检测与修复、内存分配与回收的优化方法,以及如何通过合理的编程习惯减少内存开销。通过对这些内容的阐述,旨在为Android开发者提供一套系统化的内存优化指南,助力开发出更加流畅稳定的应用。
17 0
|
28天前
|
前端开发 JavaScript Java
揭开 JavaScript 垃圾回收的秘密——一场与内存泄漏的生死较量,让你的代码从此焕然一新!
【8月更文挑战第23天】本文通过多个实例深入探讨了JavaScript中的垃圾回收机制及其对应用性能的影响。首先介绍了基本的内存管理方式,随后分析了变量不再使用时的回收过程。接着,通过事件监听器未被移除及全局变量管理不当等场景展示了常见的内存泄漏问题。最后,文章介绍了使用`WeakRef`和`FinalizationRegistry`等现代API来有效避免内存泄漏的方法。理解并运用这些技术能显著提升Web应用的稳定性和效率。
72 0
|
1月前
|
存储 编译器 C语言
【C语言篇】数据在内存中的存储(超详细)
浮点数就采⽤下⾯的规则表⽰,即指数E的真实值加上127(或1023),再将有效数字M去掉整数部分的1。

热门文章

最新文章