Spark RDD详解 —— RDD特性、lineage、缓存、checkpoint、依赖关系

简介: RDD(Resilient Distributed Datasets)弹性的分布式数据集,又称Spark core,它代表一个只读的、不可变、可分区,里面的元素可分布式并行计算的数据集。

RDD(Resilient Distributed Datasets)弹性的分布式数据集,又称Spark core,它代表一个只读的、不可变、可分区,里面的元素可分布式并行计算的数据集。

RDD是一个很抽象的概念,不易于理解,但是要想学好Spark,必须要掌握RDD,熟悉它的编程模型,这是学习Spark其他组件的基础。笔者在这里从名字和几个重要的概念给大家一一解读:

Resilient(弹性的)

提到大数据必提分布式,而在大规模的分布式集群中,任何一台服务器随时都有可能出现故障,如果一个task任务所在的服务器出现故障,必然导致这个task执行失败。此时,RDD的"弹性的"特点可以使这个task在集群内进行迁移,从而保证整体任务对故障服务器的平稳过渡。对于整个任务而言,只需重跑某些失败的task即可,而无需完全重跑,大大提高性能

Distributed(分布式)

首先了解一下分区,即数据根据一定的切分规则切分成一个个的子集。spark中分区划分规则默认是根据key进行哈希取模,切分后的数据子集可以独立运行在各个task中并且在各个集群服务器中并行执行。当然使用者也可以自定义分区规则,这个还是很有应用场景的,比如自定义分区打散某个key特别多的数据集以避免数据倾斜(数据倾斜是大数据领域常见问题也是调优重点,后续会单独讲解)

Datasets(数据集)

初学者很容易误解,认为RDD是存储数据的,毕竟从名字看来它是一个"弹性的分布式数据集"。但是,笔者强调,RDD并不存储数据,它只记录数据存储的位置。内部处理逻辑是通过使用者调用不同的Spark算子,一个RDD会转换为另一个RDD(这也体现了RDD只读不可变的特点,即一个RDD只能由另一个RDD转换而来),以transformation算子为例,RDD彼此之间会形成pipeline管道,无需等到上一个RDD所有数据处理逻辑执行完就可以立即交给下一个RDD进行处理,性能也得到了很大提升。但是RDD在进行transform时,不是每处理一条数据就交给下一个RDD,而是使用小批量的方式进行传递(这也是一个优化点)

lineage

既然Spark将RDD之间以pipeline的管道连接起来,如何避免在服务器出现故障后,重算这些数据呢?这些失败的RDD由哪来呢?这就牵涉到,Spark中的一个很重要的概念:Lineage即血统关系。它会记录RDD的元数据信息和依赖关系,当该RDD的部分分区数据丢失时,可以根据这些信息来重新运算和恢复丢失的分区数据。简单而言就是它会记录哪些RDD是怎么产生的、怎么“丢失”的等,然后Spark会根据lineage记录的信息,恢复丢失的数据子集,这也是保证Spark RDD弹性的关键点之一

Spark缓存和checkpoint

缓存(cache/persist)

cache和persist其实是RDD的两个API,并且cache底层调用的就是persist,区别之一就在于cache不能显示指定缓存方式,只能缓存在内存中,但是persist可以通过指定缓存方式,比如显示指定缓存在内存中、内存和磁盘并且序列化等。通过RDD的缓存,后续可以对此RDD或者是基于此RDD衍生出的其他的RDD处理中重用这些缓存的数据集

容错(checkpoint)

本质上是将RDD写入磁盘做检查点(通常是checkpoint到HDFS上,同时利用了hdfs的高可用、高可靠等特征)。上面提到了Spark lineage,但在实际的生产环境中,一个业务需求可能非常非常复杂,那么就可能会调用很多算子,产生了很多RDD,那么RDD之间的linage链条就会很长,一旦某个环节出现问题,容错的成本会非常高。此时,checkpoint的作用就体现出来了。使用者可以将重要的RDD checkpoint下来,出错后,只需从最近的checkpoint开始重新运算即可使用方式也很简单,指定checkpoint的地址[SparkContext.setCheckpointDir("checkpoint的地址")],然后调用RDD的checkpoint的方法即可。

checkpoint与cache/persist对比

1、都是lazy操作,只有action算子触发后才会真正进行缓存或checkpoint操作(懒加载操作是Spark任务很重要的一个特性,不仅适用于Spark RDD还适用于Spark sql等组件)

2、cache只是缓存数据,但不改变lineage。通常存于内存,丢失数据可能性更大

3、改变原有lineage,生成新的CheckpointRDD。通常存于hdfs,高可用且更可靠

RDD的依赖关系

Spark中使用DAG(有向无环图)来描述RDD之间的依赖关系,根据依赖关系的不同,划分为宽依赖和窄依赖

x.jpg

通过上图,可以很容易得出所谓宽依赖:多个子RDD的partition会依赖同一个parentRDD的partition;窄依赖:每个parentRDD的partition最多被子RDD的一个partition使用。这两个概念很重要,像宽依赖是划分stage的关键,并且一般都会伴有shuffle,而窄依赖之间其实就形成前文所述的pipeline管道进行处理数据。(图中的map、filter等是Spark提供的算子,具体含义大家可以自行到Spark官网了解,顺便感受一下scala函数式编程语言的强大)。

Spark任务以及stage等的具体划分,牵涉到源码,后续会单独讲解

最后笔者以RDD源码中的注释,阐述一下RDD的属性:
1.分区列表(数据块列表,只保存数据位置,不保存具体地址)

2.计算每个分片的函数(根据父RDD计算出子RDD)

3.RDD的依赖列表

4.RDD默认是存储于内存,但当内存不足时,会spill到
disk(可通过设置StorageLevel来控制)

5.默认hash分区,可自定义分区器

6.每一个分片的优先计算位置(preferred locations)列表,比如HDFS的block的所在位置应该是优先计算的位置

相关文章
|
2月前
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
|
3月前
|
存储 缓存 分布式计算
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
53 4
|
3月前
|
缓存 资源调度 持续交付
在清空NPM缓存后,我如何检查是否所有依赖都已正确安装?
【10月更文挑战第5天】在清空NPM缓存后,我如何检查是否所有依赖都已正确安装?
|
3月前
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
50 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
3月前
|
消息中间件 分布式计算 Kafka
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
41 0
|
3月前
|
SQL 分布式计算 大数据
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
93 0
|
3月前
|
SQL 分布式计算 大数据
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
56 0
|
3月前
|
缓存 分布式计算 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
71 0
|
3月前
|
分布式计算 算法 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
68 0
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
157 2
ClickHouse与大数据生态集成:Spark & Flink 实战