SPARK + AI SUMMIT 2020 中文精华版线上峰会—7月4日上午议题

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: SPARK + AI SUMMIT 2020 中文精华版线上峰会—7月4日上午议题发布

就在本周六、日

SPARK + AI SUMMIT 2020 中文精华版线上峰会,在北美结束第一时间“闪电般快速”为诸位奉上一场技术盛筵。本次活动由阿里云开发者社区牵头,联合十四位来自北京、上海、杭州、硅谷的PMC和意见领袖,一一还原英文现场的经典分享。

除 Databricks、Facebook、阿里巴巴、Intel 、领英等一线厂商的经典应用场景外,还有Ray、SQL、Structured Streaming、 MLflow、Koalas、K8s、Delta lake、Photon等新奇议题及社区生态的最新落地。

点击详细议程


7月4日上午议题:

李潇.jpg
范振.jpg
李元健.jpg
周康.jpg


Apache Spark 3.0简介:回顾过去的十年,并展望未来

李潇
Databricks Spark 研发部主管,领导 Spark,Koalas,Databricks runtime,OEM的研发团队。Apache Spark Committer、PMC成员。2011年从佛罗里达大学获得获得了博士学位。曾就职于IBM,获发明大师称号(Master Inventor),是异步数据库复制和一致性验证的领域专家,发表专利十余篇。(Github: gatorsmile)

我们将分享Apache Spark创建者Matei Zaharia的主题演讲,重点介绍Apache Spark 3.0 更易用、更快、更兼容的特点。Apache Spark 3.0 延续了项目初心,在SQL和Python API上取得了重大改进;自适应动态优化,使数据处理更易于访问,从而最大限度地减少手动配置。今年也是Spark首次开源发布的10周年纪念日,我们将回顾该项目及其用户群是如何增长的,以及Spark周围的生态系统(如Koalas, Delta Lake 和可视化工具)是如何发展的,共同探讨处理大规模数据的更简单、更有效的方案。


在Kubernetes上运行Apache Spark:最佳实践和陷阱

范振
花名辰繁,阿里云智能 EMR 团队高级技术专家。曾在搜狐京东工作,分别参与了 linux 内核、CDN、分布式计算和存储的研发工作。目前专注于大数据云原生化工作。

随着spark2.3引入spark on kubernetes以来,越来越多的公司开始关注这一特性。主要的原因一方面是在kubernetes上可以更好地隔离计算资源,另一方面是可以为公司提供一个统一的、云原生的基础架构技术栈。但是,如何能够稳定的、高性能的、省成本的以及安全的使用spark on kubernetes是一个很大的挑战。这次talk,我们主要谈一下在建立Data Mechanics平台(一种serverless形式的spark on kubernetes平台)的过程中积累的经验教训。


Structured Streaming生产化实践及调优

李元健
Databricks软件工程师。曾于2011年加入百度基础架构部,先后参与百度自研流式计算、分布式Tracing及批量计算系统的研发工作,2017年转岗项目经理,负责百度分布式计算平台研发工作。2019年加入Databricks Spark团队,参与开源软件及Databricks产品研发。

流式计算作业从研发完成到正式上线的过程中,往往需要做充分的预上线准备。本次分享旨在从如下四个方向入手,以现场demo的形式探讨Structured Streaming生产化实践及调优:

  1. 数据源相关参数:不合理的参数会增大流式作业计算负载,导致性能降低。
  2. 计算状态参数:不合理的设置导致无止尽的状态计算及内存耗尽。
  3. 数据输出相关参数:常见的小文件问题及应对建议。
  4. 线上作业的修改:针对已有checkpoint的线上作业修改思路及方案。

Apache Spark 3.0对Prometheus监控的原生支持

周康
花名榆舟,阿里云EMR技术专家。开源爱好者,是 Apache Spark/Hadoop/Parquet 等项目的贡献者。关注大规模分布式计算、调度、存储等系统,先后从事过 Spark、OLAP、Hadoop Yarn 等相关工作的落地。目前主要专注在 EMR 大数据上云的相关工作。

Apache Spark实现了一个支持可配置的metrics system,用户在生产环境中可以将Spark提供的metrics数据(包括driver、executor等)推送到多种Sink。Prometheus是一个开源的分布式监控系统,尤其在云原生时代被广泛使用。
Apache Spark也支持以Prometheus作为Sink,将metrics数据推送到Prometheus中来进行监控和报警。目前常见的实现方式有下面几种:

  1. 使用jmx exporter和Spark的JMXSink结合的方式;
  2. 使用第三方库;
  3. 实现Sink插件来支持更复杂的metrics;
    本次分享会为大家介绍在Apache Spark 3.0中对Prometheus监控的原生支持,包括如何使用Prometheus特性、目前已经实现的metrics、以及如何对structured streaming 作业进行监控等。

钉钉群同步直播,欢迎钉钉扫码加入Apache Spark中国技术交流社区!
二维码.JPG

对开源大数据和感兴趣的同学可以加小编微信(下图二维码,备注“进群”)进入技术交流微信群。
image.png

Apache Spark技术交流社区公众号,微信扫一扫关注
image.png

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
4月前
|
分布式计算 Apache Spark
|
存储 人工智能 分布式计算
数据湖见证从 BI 到 BI+AI的关键技术演进
AI大模型时代,云计算、大数据、人工智能等技术迅猛发展,当前时期的软件工程变革已经成为行业内外的共同关注点。近日,QCon 全球软件开发大会·北京站顺利落幕,本次大会以「启航·AIGC 软件工程变革」为主题。作为QCon大会的老朋友,阿里云资深技术专家、对象存储技术负责人-罗庆超受邀出席【面向AI的存储】专场,为大家带来《数据湖见证从BI到BI+AI的关键技术演进》分享。
31609 21
|
机器学习/深度学习 人工智能 分布式计算
Spark AI Summits大会介绍及如何下载相关视频资料【附2018年6月AI ppt下载】
Spark AI Summits大会介绍及如何下载相关视频资料【附2018年6月AI ppt下载】
141 0
Spark AI Summits大会介绍及如何下载相关视频资料【附2018年6月AI ppt下载】
|
人工智能 分布式计算 Apache
《# Apache Spark系列技术直播# 第八讲 【 微软Azure平台利用Intel Analytics Zoo构建AI客服支持实践 】》电子版地址
# Apache Spark系列技术直播# 第八讲 【 微软Azure平台利用Intel Analytics Zoo构建AI客服支持实践 】
175 0
《# Apache Spark系列技术直播# 第八讲 【 微软Azure平台利用Intel Analytics Zoo构建AI客服支持实践 】》电子版地址
|
机器学习/深度学习 人工智能 自然语言处理
在有关人与AI的议题中,「西部世界」并非当务之急
前几年,有一类话题非常火:「在 xx 行业,AI 正在取代人类」。但随着人们对现阶段 AI 发展的认识逐渐趋于理性,这类话题正变得越来越少。取而代之的是:「AI 能增强或延伸人哪方面的能力?」「AI 和人一起能解决哪些问题?」
299 0
在有关人与AI的议题中,「西部世界」并非当务之急
|
人工智能 达摩院 分布式计算
阿里云天池Apache Spark落幕:AI医疗进入落地实践深水期,达摩院如何用生态破局?
一次疫情,让阿里达摩院医疗 AI 团队一战成名。 他们利用整个假期,疫情爆发初期迅速将技术落地,率先在「郑州小汤山」落地的第一套 CT 影像识别系统代码和图片已经被分别收藏在中国国家博物馆和中国科技馆。 疫情之后,达摩院医疗 AI 产品迅速进入落地阶段,成长与痛点并存。 面对技术落地面临的普遍困境,达摩院以「数字人体」系列比赛为抓手,逐渐搭建起行业生态。
261 0
阿里云天池Apache Spark落幕:AI医疗进入落地实践深水期,达摩院如何用生态破局?
|
存储 SQL 缓存
大数据和AI | 基于Spark的高性能向量化查询引擎
由阿里云策划并成功举办的BigData和AI 见面会2020第二季在上海落下帷幕。在此次见面会上,几位业界大咖分别分享了有关大数据和AI的见解、洞察和领先技术等内容。本篇内容是由开源界知名的Databricks公司的技术主管范文臣分享的关于《基于Spark的高性能向量化查询引擎》。
大数据和AI | 基于Spark的高性能向量化查询引擎
|
5天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
27 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
27天前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
54 0
|
27天前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
35 0