十大经典排序算法动画与解析,看我就够了!(配代码完全版) | 算法必看系列三十八

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为 内部排序 和 外部排序 。内部排序是数据记录在内存中进行排序。而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。

原文链接

十大经典排序算法

排序算法是《数据结构与算法》中最基本的算法之一。

排序算法可以分为 内部排序外部排序

内部排序是数据记录在内存中进行排序。

而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。

用一张图概括:
image.png
关于时间复杂度:
平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。

线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序

线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。

关于稳定性:
稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

1. 冒泡排序

1.1 算法步骤

比较相邻的元素。如果第一个比第二个大,就交换他们两个。

对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

针对所有的元素重复以上的步骤,除了最后一个。

持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

1.2 动画演示

111.gif

冒泡排序动画演示

1.3参考代码

1// Java 代码实现
 2public class BubbleSort implements IArraySort {
 3
 4    @Override
 5    public int[] sort(int[] sourceArray) throws Exception {
 6        // 对 arr 进行拷贝,不改变参数内容
 7        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
 8
 9        for (int i = 1; i < arr.length; i++) {
10            // 设定一个标记,若为true,则表示此次循环没有进行交换,也就是待排序列已经有序,排序已经完成。
11            boolean flag = true;
12
13            for (int j = 0; j < arr.length - i; j++) {
14                if (arr[j] > arr[j + 1]) {
15                    int tmp = arr[j];
16                    arr[j] = arr[j + 1];
17                    arr[j + 1] = tmp;
18
19                    flag = false;
20                }
21            }
22
23            if (flag) {
24                break;
25            }
26        }
27        return arr;
28    }
29}

2. 选择排序

2.1 算法步骤

首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置

再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

重复第二步,直到所有元素均排序完毕。

2.2 动画演示

640.gif

选择排序动画演示

2.3 参考代码

 1//Java 代码实现
 2public class SelectionSort implements IArraySort {
 3
 4    @Override
 5    public int[] sort(int[] sourceArray) throws Exception {
 6        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
 7
 8        // 总共要经过 N-1 轮比较
 9        for (int i = 0; i < arr.length - 1; i++) {
10            int min = i;
11
12            // 每轮需要比较的次数 N-i
13            for (int j = i + 1; j < arr.length; j++) {
14                if (arr[j] < arr[min]) {
15                    // 记录目前能找到的最小值元素的下标
16                    min = j;
17                }
18            }
19
20            // 将找到的最小值和i位置所在的值进行交换
21            if (i != min) {
22                int tmp = arr[i];
23                arr[i] = arr[min];
24                arr[min] = tmp;
25            }
26
27        }
28        return arr;
29    }
30}

3. 插入排序

3.1 算法步骤

将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。

从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

3.2 动画演示

640.gif

插入排序动画演示

3.3 参考代码

1//Java 代码实现
 2public class InsertSort implements IArraySort {
 3
 4    @Override
 5    public int[] sort(int[] sourceArray) throws Exception {
 6        // 对 arr 进行拷贝,不改变参数内容
 7        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
 8
 9        // 从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的
10        for (int i = 1; i < arr.length; i++) {
11
12            // 记录要插入的数据
13            int tmp = arr[i];
14
15            // 从已经排序的序列最右边的开始比较,找到比其小的数
16            int j = i;
17            while (j > 0 && tmp < arr[j - 1]) {
18                arr[j] = arr[j - 1];
19                j--;
20            }
21
22            // 存在比其小的数,插入
23            if (j != i) {
24                arr[j] = tmp;
25            }
26
27        }
28        return arr;
29    }
30}

4. 希尔排序

4.1 算法步骤

选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;

按增量序列个数 k,对序列进行 k 趟排序;

每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

4.2 动画演示

640 .gif

希尔排序动画演示

4.3 参考代码

1//Java 代码实现
 2public class ShellSort implements IArraySort {
 3
 4    @Override
 5    public int[] sort(int[] sourceArray) throws Exception {
 6        // 对 arr 进行拷贝,不改变参数内容
 7        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
 8
 9        int gap = 1;
10        while (gap < arr.length) {
11            gap = gap * 3 + 1;
12        }
13
14        while (gap > 0) {
15            for (int i = gap; i < arr.length; i++) {
16                int tmp = arr[i];
17                int j = i - gap;
18                while (j >= 0 && arr[j] > tmp) {
19                    arr[j + gap] = arr[j];
20                    j -= gap;
21                }
22                arr[j + gap] = tmp;
23            }
24            gap = (int) Math.floor(gap / 3);
25        }
26
27        return arr;
28    }
29}

5. 归并排序

5.1 算法步骤

申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

设定两个指针,最初位置分别为两个已经排序序列的起始位置;

比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

重复步骤 3 直到某一指针达到序列尾;

将另一序列剩下的所有元素直接复制到合并序列尾。

5.2 动画演示

640 (1).gif

归并排序动画演示

5.3 参考代码

 1//Java 代码实现
     public class MergeSort implements IArraySort {
 2
 3    @Override
 4    public int[] sort(int[] sourceArray) throws Exception {
 5        // 对 arr 进行拷贝,不改变参数内容
 6        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
 7
 8        if (arr.length < 2) {
 9            return arr;
10        }
11        int middle = (int) Math.floor(arr.length / 2);
12
13        int[] left = Arrays.copyOfRange(arr, 0, middle);
14        int[] right = Arrays.copyOfRange(arr, middle, arr.length);
15
16        return merge(sort(left), sort(right));
17    }
18
19    protected int[] merge(int[] left, int[] right) {
20        int[] result = new int[left.length + right.length];
21        int i = 0;
22        while (left.length > 0 && right.length > 0) {
23            if (left[0] <= right[0]) {
24                result[i++] = left[0];
25                left = Arrays.copyOfRange(left, 1, left.length);
26            } else {
27                result[i++] = right[0];
28                right = Arrays.copyOfRange(right, 1, right.length);
29            }
30        }
31
32        while (left.length > 0) {
33            result[i++] = left[0];
34            left = Arrays.copyOfRange(left, 1, left.length);
35        }
36
37        while (right.length > 0) {
38            result[i++] = right[0];
39            right = Arrays.copyOfRange(right, 1, right.length);
40        }
41
42        return result;
43    }
44
45}

6. 快速排序

6.1 算法步骤

从数列中挑出一个元素,称为 “基准”(pivot);

重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

6.2 动画演示

640 (2).gif

快速排序动画演示

6.3 参考代码

 1//Java 代码实现
 2public class QuickSort implements IArraySort {
 3
 4    @Override
 5    public int[] sort(int[] sourceArray) throws Exception {
 6        // 对 arr 进行拷贝,不改变参数内容
 7        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
 8
 9        return quickSort(arr, 0, arr.length - 1);
10    }
11
12    private int[] quickSort(int[] arr, int left, int right) {
13        if (left < right) {
14            int partitionIndex = partition(arr, left, right);
15            quickSort(arr, left, partitionIndex - 1);
16            quickSort(arr, partitionIndex + 1, right);
17        }
18        return arr;
19    }
20
21    private int partition(int[] arr, int left, int right) {
22        // 设定基准值(pivot)
23        int pivot = left;
24        int index = pivot + 1;
25        for (int i = index; i <= right; i++) {
26            if (arr[i] < arr[pivot]) {
27                swap(arr, i, index);
28                index++;
29            }
30        }
31        swap(arr, pivot, index - 1);
32        return index - 1;
33    }
34
35    private void swap(int[] arr, int i, int j) {
36        int temp = arr[i];
37        arr[i] = arr[j];
38        arr[j] = temp;
39    }
40
41}

7. 堆排序

7.1 算法步骤

创建一个堆 H[0……n-1];

把堆首(最大值)和堆尾互换;

把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;

重复步骤 2,直到堆的尺寸为 1。

7.2 动画演示

640 (3).gif

堆排序动画演示

7.3 参考代码

1//Java 代码实现
 2public class HeapSort implements IArraySort {
 3
 4    @Override
 5    public int[] sort(int[] sourceArray) throws Exception {
 6        // 对 arr 进行拷贝,不改变参数内容
 7        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
 8
 9        int len = arr.length;
10
11        buildMaxHeap(arr, len);
12
13        for (int i = len - 1; i > 0; i--) {
14            swap(arr, 0, i);
15            len--;
16            heapify(arr, 0, len);
17        }
18        return arr;
19    }
20
21    private void buildMaxHeap(int[] arr, int len) {
22        for (int i = (int) Math.floor(len / 2); i >= 0; i--) {
23            heapify(arr, i, len);
24        }
25    }
26
27    private void heapify(int[] arr, int i, int len) {
28        int left = 2 * i + 1;
29        int right = 2 * i + 2;
30        int largest = i;
31
32        if (left < len && arr[left] > arr[largest]) {
33            largest = left;
34        }
35
36        if (right < len && arr[right] > arr[largest]) {
37            largest = right;
38        }
39
40        if (largest != i) {
41            swap(arr, i, largest);
42            heapify(arr, largest, len);
43        }
44    }
45
46    private void swap(int[] arr, int i, int j) {
47        int temp = arr[i];
48        arr[i] = arr[j];
49        arr[j] = temp;
50    }
51
52}

8. 计数排序

8.1 算法步骤

花O(n)的时间扫描一下整个序列 A,获取最小值 min 和最大值 max

开辟一块新的空间创建新的数组 B,长度为 ( max - min + 1)

数组 B 中 index 的元素记录的值是 A 中某元素出现的次数

最后输出目标整数序列,具体的逻辑是遍历数组 B,输出相应元素以及对应的个数

8.2 动画演示

640 (4).gif

计数排序动画演示

8.3 参考代码

 1//Java 代码实现
 2public class CountingSort implements IArraySort {
 3
 4    @Override
 5    public int[] sort(int[] sourceArray) throws Exception {
 6        // 对 arr 进行拷贝,不改变参数内容
 7        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
 8
 9        int maxValue = getMaxValue(arr);
10
11        return countingSort(arr, maxValue);
12    }
13
14    private int[] countingSort(int[] arr, int maxValue) {
15        int bucketLen = maxValue + 1;
16        int[] bucket = new int[bucketLen];
17
18        for (int value : arr) {
19            bucket[value]++;
20        }
21
22        int sortedIndex = 0;
23        for (int j = 0; j < bucketLen; j++) {
24            while (bucket[j] > 0) {
25                arr[sortedIndex++] = j;
26                bucket[j]--;
27            }
28        }
29        return arr;
30    }
31
32    private int getMaxValue(int[] arr) {
33        int maxValue = arr[0];
34        for (int value : arr) {
35            if (maxValue < value) {
36                maxValue = value;
37            }
38        }
39        return maxValue;
40    }
41
42}

9. 桶排序

9.1 算法步骤

设置固定数量的空桶。

把数据放到对应的桶中。

对每个不为空的桶中数据进行排序。

拼接不为空的桶中数据,得到结果

9.2 动画演示

640 (5).gif

桶排序动画演示

9.3 参考代码

 1//Java 代码实现
 2public class BucketSort implements IArraySort {
 3
 4    private static final InsertSort insertSort = new InsertSort();
 5
 6    @Override
 7    public int[] sort(int[] sourceArray) throws Exception {
 8        // 对 arr 进行拷贝,不改变参数内容
 9        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
10
11        return bucketSort(arr, 5);
12    }
13
14    private int[] bucketSort(int[] arr, int bucketSize) throws Exception {
15        if (arr.length == 0) {
16            return arr;
17        }
18
19        int minValue = arr[0];
20        int maxValue = arr[0];
21        for (int value : arr) {
22            if (value < minValue) {
23                minValue = value;
24            } else if (value > maxValue) {
25                maxValue = value;
26            }
27        }
28
29        int bucketCount = (int) Math.floor((maxValue - minValue) / bucketSize) + 1;
30        int[][] buckets = new int[bucketCount][0];
31
32        // 利用映射函数将数据分配到各个桶中
33        for (int i = 0; i < arr.length; i++) {
34            int index = (int) Math.floor((arr[i] - minValue) / bucketSize);
35            buckets[index] = arrAppend(buckets[index], arr[i]);
36        }
37
38        int arrIndex = 0;
39        for (int[] bucket : buckets) {
40            if (bucket.length <= 0) {
41                continue;
42            }
43            // 对每个桶进行排序,这里使用了插入排序
44            bucket = insertSort.sort(bucket);
45            for (int value : bucket) {
46                arr[arrIndex++] = value;
47            }
48        }
49
50        return arr;
51    }
52
53    /**
54     * 自动扩容,并保存数据
55     *
56     * @param arr
57     * @param value
58     */
59    private int[] arrAppend(int[] arr, int value) {
60        arr = Arrays.copyOf(arr, arr.length + 1);
61        arr[arr.length - 1] = value;
62        return arr;
63    }
64
65}

10. 基数排序

10.1 算法步骤

将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零

从最低位开始,依次进行一次排序

从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列

10.2 动画演示

111 .gif

基数排序动画演示

10.3 参考代码

 1//Java 代码实现
 2public class RadixSort implements IArraySort {
 3
 4    @Override
 5    public int[] sort(int[] sourceArray) throws Exception {
 6        // 对 arr 进行拷贝,不改变参数内容
 7        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
 8
 9        int maxDigit = getMaxDigit(arr);
10        return radixSort(arr, maxDigit);
11    }
12
13    /**
14     * 获取最高位数
15     */
16    private int getMaxDigit(int[] arr) {
17        int maxValue = getMaxValue(arr);
18        return getNumLenght(maxValue);
19    }
20
21    private int getMaxValue(int[] arr) {
22        int maxValue = arr[0];
23        for (int value : arr) {
24            if (maxValue < value) {
25                maxValue = value;
26            }
27        }
28        return maxValue;
29    }
30
31    protected int getNumLenght(long num) {
32        if (num == 0) {
33            return 1;
34        }
35        int lenght = 0;
36        for (long temp = num; temp != 0; temp /= 10) {
37            lenght++;
38        }
39        return lenght;
40    }
41
42    private int[] radixSort(int[] arr, int maxDigit) {
43        int mod = 10;
44        int dev = 1;
45
46        for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
47            // 考虑负数的情况,这里扩展一倍队列数,其中 [0-9]对应负数,[10-19]对应正数 (bucket + 10)
48            int[][] counter = new int[mod * 2][0];
49
50            for (int j = 0; j < arr.length; j++) {
51                int bucket = ((arr[j] % mod) / dev) + mod;
52                counter[bucket] = arrayAppend(counter[bucket], arr[j]);
53            }
54
55            int pos = 0;
56            for (int[] bucket : counter) {
57                for (int value : bucket) {
58                    arr[pos++] = value;
59                }
60            }
61        }
62
63        return arr;
64    }
65    private int[] arrayAppend(int[] arr, int value) {
66        arr = Arrays.copyOf(arr, arr.length + 1);
67        arr[arr.length - 1] = value;
68        return arr;
69    }
70}

本文思路来源于:https://github.com/hustcc/JS-Sorting-Algorithm

   END   

来源 | 五分钟学算法
作者 | 程序员小吴

相关文章
|
10天前
|
存储 算法 安全
.NET 平台 SM2 国密算法 License 证书生成深度解析
授权证书文件的后缀通常取决于其编码格式和具体用途。本文档通过一个示例程序展示了如何在 .NET 平台上使用国密 SM2 算法生成和验证许可证(License)文件。该示例不仅详细演示了 SM2 国密算法的实际应用场景,还提供了关于如何高效处理大规模许可证文件生成任务的技术参考。通过对不同并发策略的性能测试,开发者可以更好地理解如何优化许可证生成流程,以满足高并发和大数据量的需求。 希望这段描述更清晰地传达了程序的功能和技术亮点。
66 13
.NET 平台 SM2 国密算法 License 证书生成深度解析
|
2月前
|
搜索推荐 UED Python
实现一个带有昼夜背景切换的动态时钟:从代码到功能解析
本文介绍了一个使用Python和Tkinter库实现的动态时钟程序,具有昼夜背景切换、指针颜色随机变化及整点和半点报时功能。通过设置不同的背景颜色和随机变换指针颜色,增强视觉吸引力;利用多线程技术确保音频播放不影响主程序运行。该程序结合了Tkinter、Pygame、Pytz等库,提供了一个美观且实用的时间显示工具。欢迎点赞、关注、转发、收藏!
138 94
|
3天前
|
存储 搜索推荐 算法
算法系列之排序算法-堆排序
堆排序(Heap Sort)是一种基于堆数据结构的比较排序算法。它的时间复杂度为 $O(nlogn)$,并且是一种原地排序算法(即不需要额外的存储空间)。堆排序的核心思想是利用堆的性质来维护一个最大堆或最小堆,然后逐步将堆顶元素(最大值或最小值)取出,放到数组的末尾,最终得到一个有序的数组。
20 8
算法系列之排序算法-堆排序
|
19天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
163 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
10天前
|
人工智能 文字识别 自然语言处理
保单AI识别技术及代码示例解析
车险保单包含基础信息、车辆信息、人员信息、保险条款及特别约定等关键内容。AI识别技术通过OCR、文档结构化解析和数据校验,实现对保单信息的精准提取。然而,版式多样性、信息复杂性、图像质量和法律术语解析是主要挑战。Python代码示例展示了如何使用PaddleOCR进行保单信息抽取,并提出了定制化训练、版式分析等优化方向。典型应用场景包括智能录入、快速核保、理赔自动化等。未来将向多模态融合、自适应学习和跨区域兼容性发展。
|
20天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
36 10
|
17天前
|
存储 监控 算法
探秘员工泄密行为防线:基于Go语言的布隆过滤器算法解析
在信息爆炸时代,员工泄密行为对企业构成重大威胁。本文聚焦布隆过滤器(Bloom Filter)这一高效数据结构,结合Go语言实现算法,帮助企业识别和预防泄密风险。通过构建正常操作“指纹库”,实时监测员工操作,快速筛查可疑行为。示例代码展示了如何利用布隆过滤器检测异常操作,并提出优化建议,如调整参数、结合日志分析系统等,全方位筑牢企业信息安全防线,守护核心竞争力。
|
2月前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
57 17
|
5天前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
|
6天前
|
存储 算法 安全
基于 Go 语言的公司内网管理软件哈希表算法深度解析与研究
在数字化办公中,公司内网管理软件通过哈希表算法保障信息安全与高效管理。哈希表基于键值对存储和查找,如用户登录验证、设备信息管理和文件权限控制等场景,Go语言实现的哈希表能快速验证用户信息,提升管理效率,确保网络稳定运行。
18 0

推荐镜像

更多