轻量化AI服务再添两将!阿里云机器学习PAI DSW 2.0 & Alink商业版重磅发布

简介: 近日,阿里云推出机器学习PAI两大新品DSW 2.0 & Alink商业版,机器学习PAI产品家族,覆盖了机器学习的数据处理、建模、训练、模型优化、在线预测的全产品线,用户既可以搭建完整的个性化推荐系统,让CTR提高10%+; 也可以使用Blade进行深度学习模型进行优化,节省GPU消耗50%。

DSW 2.0:面向AI研发的集成开发平台

DSW(Data Science Workshop)是阿里巴巴PAI团队根据多年的AI算法和产品研发经验积累,围绕提高AI算法研发效率,降低研发成本而推出的一款适用于各类AI开发者的云端机器学习集成开发环境。DSW2.0是借助阿里云ECS,Docker和Kubernetes等云原生技术,能够在几分钟内帮用户完成环境搭建,相对DSW1.0开放更高的开发权限,满足各个层面客户的使用需求。

9989c5b90f96dedb20d3e717592eeed2c54bdb86.jpeg

  • 云原生架构

DSW借助阿里云ECS,Docker和Kubernetes等云原生技术,能够在几分钟内帮用户完成环境搭建。用户可以根据算法需要和成本考虑,选择阿里云ECS提供的包括CPU和异构计算GPU在内的所有资源规格。

  • 满足不同层次开发习惯

结合交互式编程和命令行输入,DSW提供了三种编程入口: WebIde适用于工程化要求比较高的项目;JupyterLab适用于快速POC试验;Terminal入口可用于快速执行Shell命令,运行程序和简单的编辑等。

  • 预装丰富插件

DSW还开发和预装了各种JupyterLab和WebIDE插件,比如广受深度学习开发者喜爱的可视化工具Tensorboard,用户在DSW内通过Launcher,Commands打开,甚至还可以使用%tensorboard魔法命令直接在Notebook中开启等多种方式使用Tensorboard。不仅支持本地文件,还可以打开存放在OSS,ODPS里的训练日志。针对算法同学使用Python比较多的特点, DSW的WebIDE内安装了Python插件,可以直接在浏览器内在线调试,单步跟踪程序运行。用户还可以根据需要,自主安装需要的任意插件。

  • 支持多种数据源读写

NAS, OSS,云盘和MaxCompute,尤其是内置了dswmagic魔法命令可以让用户在ipynb文件中使用SQL语句读写MaxCompute表中数据,预置的SQL编辑器支持语法高亮、智能提示、自动补全等功能,还支持运行带变量替换功能的Sql脚本。查询结果自动以最友好的图形化展示。

Alink:流批一体机器学习算法平台

Alink拥有丰富的批式算法和流式算法,能够帮助数据分析和应用开发人员能够从数据处理、特征工程、模型训练、预测,端到端地完成整个流程。Alink提供的功能算法模块中,每一个模块都包含流式和批式算法。比如线性回归,包含批式线性回归训练,流式线性回归预测和批式线性回归预测。另外,Alink算法覆盖分类、回归、聚类、评估、统计分析、特征工程、异常检测、文本、在线学习、关联分析等经典领域,是一个通用的机器学习算法平台。

9989c5b90f96dedb20d3e717592eeed2c54bdb86.jpeg

  • 算法性能

我们从下图中可以看出在回归算法中,Alink算法性能最高优于Spark 1.38倍;分类算法中Alink大多数算法性能优于Spark,最高优于2.52倍;聚类算法Alink算法性能最高优于Spark 1.85倍;协同过滤Alink算法性能最高优于Spark 2.26倍。

9989c5b90f96dedb20d3e717592eeed2c54bdb86.jpeg

Flink VS Spark算法性能

  • 更友好的交互式体验

我们提供两种用户使用界面:web和PyAlink。Web界面提供拖拽的方式创建试验,通过对每一个组件进行配置完成整个试验的参数配置。在各个算法节点旁,我们用闪烁的小灯泡💡表示“运行中”的状态,用对勾✅表示“运行完成”的状态。一般情况下,只有批式(batch)组件才有可能运行结束。基于各个组件的运行状态,可以十分方便地判断当前实验运行到了什么程度。

同时为了满足脚本用户的需求,我们提供了PyAlink on notebook,用户可以通过PyAlink的python包使用Alink。PyAlink支持单机运行,也支持集群提交。并且打通Operator(Alink算子)和DataFrame的接口,从而使得Alink整个算法流程无缝融入python。PyAlink也提供使用Python函数来调用UDF或者UDTF。

阿里云机器学习PAI是覆盖人工智能全链路的产品家族,自上线以来,受到广大AI开发者的喜爱,经过千锤百炼,证明不仅适合个人和团队研发,也支持大规模算法竞赛和教育培训。本次重磅发布的PAIDSW2.0和商业版Alink致力成为最懂用户的轻量化AI服务,包含数据处理、建模、训练、模型优化、在线预测等多种产品版块,为用户提供一站式体验服务。

发布会传送门

产品详情

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
3月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
758 109
|
7月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
5月前
|
机器学习/深度学习 人工智能 监控
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
本系列文章深入讲解了从Seq2Seq、RNN到Transformer,再到GPT模型的关键技术原理与实现细节,帮助读者全面掌握Transformer及其在NLP中的应用。同时,通过一个房价预测的完整案例,介绍了算法工程师如何利用数据训练模型并解决实际问题,涵盖需求分析、数据收集、模型训练与部署等全流程。文章适合初学者和开发者学习AI基础与实战技能。
733 25
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
|
6月前
|
人工智能 监控 测试技术
云上AI推理平台全掌握 (1):PAI-EAS LLM服务一键压测
在AI技术飞速发展的今天,大语言模型(LLM)、多模态模型等前沿技术正深刻改变行业格局。推理服务是大模型从“实验室突破”走向“产业级应用”的必要环节,需直面高并发流量洪峰、低延时响应诉求、异构硬件优化适配、成本精准控制等复杂挑战。 阿里云人工智能平台 PAI 致力于为用户提供全栈式、高可用的推理服务能力。在本系列技术专题中,我们将围绕分布式推理架构、Serverless 弹性资源全球调度、压测调优和服务可观测等关键技术方向,展现 PAI 平台在推理服务侧的产品能力,助力企业和开发者在 AI 时代抢占先机,让我们一起探索云上 AI 推理的无限可能,释放大模型的真正价值!
|
6月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL消息传递接口的PyG替换
DGL (Deep Graph Learning) 和 PyG (Pytorch Geometric) 是两个主流的图神经网络库,它们在API设计和底层实现上有一定差异,在不同场景下,研究人员会使用不同的依赖库,昇腾NPU对PyG图机器学习库的支持亲和度更高,因此有些时候需要做DGL接口的PyG替换。
|
6月前
|
缓存 人工智能 负载均衡
PAI 重磅发布模型权重服务,大幅降低模型推理冷启动与扩容时长
阿里云人工智能平台PAI 平台推出模型权重服务,通过分布式缓存架构、RDMA高速传输、智能分片等技术,显著提升大语言模型部署效率,解决模型加载耗时过长的业界难题。实测显示,Qwen3-32B冷启动时间从953秒降至82秒(降幅91.4%),扩容时间缩短98.2%。
|
7月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
410 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
6月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL图构建接口的PyG替换
本文探讨了在图神经网络中将DGL接口替换为PyG实现的方法,重点以RFdiffusion蛋白质设计模型中的SE3Transformer为例。SE3Transformer通过SE(3)等变性提取三维几何特征,其图构建部分依赖DGL接口。文章详细介绍了两个关键函数的替换:`make_full_graph` 和 `make_topk_graph`。前者构建完全连接图,后者生成k近邻图。通过PyG的高效实现(如`knn_graph`),我们简化了图结构创建过程,并调整边特征处理逻辑以兼容不同框架,从而更好地支持昇腾NPU等硬件环境。此方法为跨库迁移提供了实用参考。
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
568 14