利用Grafana和Arthas自动抓取异常Java进程的线程堆栈

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 自动抓取占用CPU资源的Java程序线程栈。

前言

近期发现业务高峰期时刻会出现CPU繁忙导致的timeout异常,通过监控来看是因为Node上面的一些Pod突发抢占了大量CPU导致的。

问: 没有限制CPU吗?是不是限制的CPU使用值就可以解决了呢?
解: 其实不能根本解决这个问题,因为使用的容器引擎是Docker,而Docker是使用了cgroups技术,这就引入了一个老大难的问题,cgroup的隔离性。当问题发生时并没有办法把异常CPU进程直接摁住,而会有短暂的高峰,现象为:限制了CPU为2核,突发时CPU可能是4、5、6等,然后容器会被kill掉,K8S会尝试重建容器。

那么该如何解决?

  1. 使用隔离性更好的容器引擎,如 kata(VM级别)。
  2. 优化程序

方案1

我们可以知道方案1解决的比较彻底,而且只需要全局处理一次即可,但技术比较新颖,不知道会不会带来其它问题,我们之后准备拿出部分Node尝试kata container。

方案2

对应用开发者要求比较高,需要对应的开发者针对性介入,短期收益很高,我们先部署了这种。

如何实施?

我们知道程序在运行中,除非特别严重的BUG,CPU高峰一般非常短暂,这时候靠人肉抓包基本上是来不及的,也很耗费精力,我们就希望有一个程序能在CPU达到一定阈值的时候自动抓取线程堆栈来事后针对性优化,并且一定时间内只允许运行一次防止循环抓包导致程序不可用。

根据要实现的最终效果我们发现与Grafana、Prometheus的告警机制十分接近,我们要做的就是接收告警的webhook,去对应的容器中获取线程堆栈就行。

于是我们利用了 Grafana ,写了一个程序来完成这个功能。

项目信息

开发语言: Go、Shell
项目地址: https://github.com/majian159/k8s-java-debug-daemon

k8s-java-debug-daemon

利用了 Grafana 的告警机制,配合阿里的 arthas,来完成高CPU使用率线程的堆栈抓取。
整体流程如下:

  1. 为 Grafana 添加 webhook 类型的告警通知渠道,地址为该程序的 url(默认的hooks路径为 /hooks)。
  2. 配置Grafana图表,并设置告警阈值
  3. 当 webhook 触发时,程序会自动将 craw.sh 脚本拷贝到对应 Pod 的容器中并执行。
  4. 程序将 stdout 保存到本地文件。

效果预览


默认行为

  • 每 node 同时运行执行数为10
    可以在 ./internal/defaultvalue.go 中更改

    var defaultNodeLockManager = nodelock.NewLockManager(10)
  • 默认使用集群内的Master配置
    可以在 ./internal/defaultvalue.go 中更改

    func DefaultKubernetesClient(){}
    
    // default
    func getConfigByInCluster(){}
    
    func getConfigByOutOfCluster(){}
  • 默认使用并实现了一个基于本地文件的堆栈存储器, 路径位于工作路径下的 stacks
    可以在 ./internal/defaultvalue.go 中更改

    func GetDefaultNodeLockManager(){}
  • 默认取最繁忙的前50个线程的堆栈信息 (可在 craw.sh 中修改)
  • 采集样本时间为2秒 (可在 craw.sh 中修改)

如何使用

Docker Image

majian159/java-debug-daemon

为 Grafana 新建一个通知频道

注意点

  1. 需要打开 Send reminders, 不然 Grafana 默认在触发告警后一直没有解决不会重复发送告警
  2. Send reminder every 可以控制最快多久告警一次

为 Grafana 新建一个告警图表

如果嫌麻烦可以直接导入以下配置, 在自行更改

{
  "datasource": "prometheus",
  "alert": {
    "alertRuleTags": {},
    "conditions": [
      {
        "evaluator": {
          "params": [
            1
          ],
          "type": "gt"
        },
        "operator": {
          "type": "and"
        },
        "query": {
          "params": [
            "A",
            "5m",
            "now"
          ]
        },
        "reducer": {
          "params": [],
          "type": "last"
        },
        "type": "query"
      }
    ],
    "executionErrorState": "keep_state",
    "for": "10s",
    "frequency": "30s",
    "handler": 1,
    "name": "Pod 高CPU堆栈抓取",
    "noDataState": "no_data",
    "notifications": [
      {
        "uid": "AGOJRCqWz"
      }
    ]
  },
  "aliasColors": {},
  "bars": false,
  "dashLength": 10,
  "dashes": false,
  "fill": 1,
  "fillGradient": 0,
  "gridPos": {
    "h": 9,
    "w": 24,
    "x": 0,
    "y": 2
  },
  "hiddenSeries": false,
  "id": 14,
  "legend": {
    "alignAsTable": true,
    "avg": true,
    "current": true,
    "max": true,
    "min": false,
    "rightSide": true,
    "show": true,
    "total": false,
    "values": true
  },
  "lines": true,
  "linewidth": 1,
  "nullPointMode": "null",
  "options": {
    "dataLinks": []
  },
  "percentage": false,
  "pointradius": 2,
  "points": false,
  "renderer": "flot",
  "seriesOverrides": [],
  "spaceLength": 10,
  "stack": false,
  "steppedLine": false,
  "targets": [
    {
      "expr": "container_memory_working_set_bytes{job=\"kubelet\", metrics_path=\"/metrics/cadvisor\", image!=\"\", container!=\"POD\"}* on (namespace, pod) group_left(node) max by(namespace, pod, node, container) (kube_pod_info)",
      "legendFormat": "{{node}} - {{namespace}} - {{pod}} - {{container}}",
      "refId": "A"
    }
  ],
  "thresholds": [
    {
      "colorMode": "critical",
      "fill": true,
      "line": true,
      "op": "gt",
      "value": 1
    }
  ],
  "timeFrom": null,
  "timeRegions": [],
  "timeShift": null,
  "title": "Pod CPU",
  "tooltip": {
    "shared": true,
    "sort": 0,
    "value_type": "individual"
  },
  "type": "graph",
  "xaxis": {
    "buckets": null,
    "mode": "time",
    "name": null,
    "show": true,
    "values": []
  },
  "yaxes": [
    {
      "format": "short",
      "label": null,
      "logBase": 1,
      "max": null,
      "min": null,
      "show": true
    },
    {
      "format": "short",
      "label": null,
      "logBase": 1,
      "max": null,
      "min": null,
      "show": true
    }
  ],
  "yaxis": {
    "align": false,
    "alignLevel": null
  }
}

Queries配置

Metrics 中填写

container_memory_working_set_bytes{job="kubelet", metrics_path="/metrics/cadvisor", image!="", container!="POD"} * on (namespace, pod) group_left(node) max by(namespace, pod, node, container) (kube_pod_info)

Legend 中填写

{{node}} - {{namespace}} - {{pod}} - {{container}}

配置完如下:

Alert配置

IS ABOVE
CPU使用值,这边配置的是超过1核CPU就报警, 可以根据需要自己调节
Evaluate every
每多久计算一次
For
Pedding时间

配置完应该如下:

构建

二进制

# 为当前系统平台构建
make

# 指定目标系统, GOOS: linux darwin window freebsd
make GOOS=linux

Docker镜像

make docker

# 自定义镜像tag
make docker IMAGE=test
相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
目录
相关文章
|
10天前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
6天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
6天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
24 3
|
7天前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
10天前
|
监控 Java 数据库连接
Java线程管理:守护线程与用户线程的区分与应用
在Java多线程编程中,线程可以分为守护线程(Daemon Thread)和用户线程(User Thread)。这两种线程在行为和用途上有着明显的区别,了解它们的差异对于编写高效、稳定的并发程序至关重要。
19 2
|
10天前
|
监控 Java 开发者
Java线程管理:守护线程与本地线程的深入剖析
在Java编程语言中,线程是程序执行的最小单元,它们可以并行执行以提高程序的效率和响应性。Java提供了两种特殊的线程类型:守护线程和本地线程。本文将深入探讨这两种线程的区别,并探讨它们在实际开发中的应用。
15 1
|
12天前
|
安全 Java 开发者
Java中的多线程编程:从基础到实践
本文深入探讨了Java多线程编程的核心概念和实践技巧,旨在帮助读者理解多线程的工作原理,掌握线程的创建、管理和同步机制。通过具体示例和最佳实践,本文展示了如何在Java应用中有效地利用多线程技术,提高程序性能和响应速度。
47 1
|
监控 安全 Java
如何查看Java进程和线程
如何查看Java进程和线程
2416 1
如何查看Java进程和线程
|
监控 安全 NoSQL
如何查看Java进程和线程?你get了没?
如何查看Java进程和线程?你get了没?
616 0
如何查看Java进程和线程?你get了没?
|
21天前
|
Java 开发者
Java多线程编程中的常见误区与最佳实践####
本文深入剖析了Java多线程编程中开发者常遇到的几个典型误区,如对`start()`与`run()`方法的混淆使用、忽视线程安全问题、错误处理未同步的共享变量等,并针对这些问题提出了具体的解决方案和最佳实践。通过实例代码对比,直观展示了正确与错误的实现方式,旨在帮助读者构建更加健壮、高效的多线程应用程序。 ####