Kubernetes弹性伸缩全场景解读(八) - 定时伸缩组件支持HPA兼容

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 在之前的文章中,我们介绍了kubernetes-cronhpa-controller是如何通过设置定时的方式触发容器的水平副本伸缩,但是在实际的场景下,虽然定时伸缩对于负载有规律的应用比较友好,但是应用为了防止突发的流量冲击,还是会配置HPA来做最后的保障的。

前言

在之前的文章中,我们介绍了kubernetes-cronhpa-controller是如何通过设置定时的方式触发容器的水平副本伸缩,但是在实际的场景下,虽然定时伸缩对于负载有规律的应用比较友好,但是应用为了防止突发的流量冲击,还是会配置HPA来做最后的保障的。那么CronHPA与HPA之间该怎么选择呢?

定时伸缩组件兼容HPA

在抉择什么时候需要CronHPA,什么时候使用HPA的时候,我们在思考是否可以将CronHPA与HPA一起使用,如果一起使用会有什么需要解决的问题呢?首先我们先看CronHPA的模板定义

apiVersion: autoscaling.alibabacloud.com/v1beta1
kind: CronHorizontalPodAutoscaler
metadata:
  labels:
    controller-tools.k8s.io: "1.0"
  name: cronhpa-sample
spec:
   scaleTargetRef:
      apiVersion: apps/v1
      kind: Deployment
      name: nginx-deployment-basic
   jobs:
   - name: "scale-down"
     schedule: "30 */1 * * * *"
     targetSize: 1
   - name: "scale-up"
     schedule: "0 */1 * * * *"
     targetSize: 3

在CronHPA中是通过scaleTargetRef字段来获取伸缩对象的,并通过jobs的crontab规则定时伸缩实例的副本。

那么我们再来看下HPA的模板定义

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: php-apache
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: nginx-deployment-basic
  minReplicas: 1
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 50

HPA也是通过scaleTargetRef来定义伸缩的对象,并通过资源利用率来判断伸缩的情况。如果同时设置CronHPA与HPA,那么就会出现HPA与CronHPA同时操作一个scaleTargetRef的场景,而两者之间又相互独立无法感知,这样就会出现两个controller各自工作,后执行的会覆盖先执行的结果。

c01acfe2a616965e45a57714436e20aef08a3269.png
这个问题的本质是两个controller无法相互感知,从而造成了异常,当回过头来看这个问题的时候,其实我们可以发现HPA早期也有同样的问题,开发者如果希望通过用两个监控指标同时作用到HPA的时候,如果设置两个HPA对象,会出现类似的问题,在解决这个问题的时候,是通过在HPA对象中定义metrics字段,将多个metrics合并到一个HPA对象中来实现的,例如:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
  name: php-apache
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: nginx-deployment-basic
  minReplicas: 1
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 50
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 50

当两个metrics触发弹性的个数不同的时候,会根据稳定性第一的原则,优先弹出更多的副本或者在缩容时保留更多的副本。那么是否CronHPA和HPA也可以通过这个方案进行整合,答案是Yes and No。因为的确可以通过alibaba-cloud-metrics-adapter将定时的数据通过External Metrics的方式进行转换,然后通过HPA中使用External Metrics的方式进行整合和匹配。但是这样会带来的结果就是,我们需要通过HPA的结构去表达CronHPA的规则,然后再通过Metrics Adapter的模型去转换时间信息与副本计算。从模型上来看,这个方式看似兼容了HPA,但是实际上对定时伸缩的可读性、学习成本、出错诊断、审计与离线都带来了新的挑战。

那么是否还有其他的方法可以实现CronHPA与HPA的兼容呢?我们将视角放回scaleTargetRef,还记得HPA是怎么伸缩Deployment的Pod吗,是HPA将Deployment配置在了scaleTargetRef的字段下,然后Deployment通过自身定义查找到了ReplicaSet,在通过ReplicaSet调整了真实的副本数目。
b4259cc83f9b203cf4c35cf96e48fddfdbc61b12.png
那么从这个角度出发,我们有了一个大胆的想法,是否可以将scaleTargetRef设置为HPA对象,然后通过HPA对象来寻找真实的scaleTargetRef
6dfb0eba5791cb43ef0d1cd4397f4eaab8553c22.png

apiVersion: autoscaling.alibabacloud.com/v1beta1
kind: CronHorizontalPodAutoscaler
metadata:
  labels:
    controller-tools.k8s.io: "1.0"
  name: cronhpa-sample
spec:
   scaleTargetRef:
      apiVersion: autoscaling/v1
      kind: HorizontalPodAutoscaler
      name:  nginx-deployment-basic-hpa
   jobs:
   - name: "scale-down"
     schedule: "30 */1 * * * *"
     targetSize: 1
     runOnce: true
   - name: "scale-up"
     schedule: "0 */1 * * * *"
     targetSize: 3
     runOnce: true

这样设计的好处是,首先CronHPA可以感知HPA当前的状态,明确的知晓HPA的min、max、desired的数值,同时也知道HPA scaleTargetRef所对应的当前replicas。那么本着稳定性原则,我们要如何操控HPA呢?

hpa(min/max) cronhpa deployment result 场景
1/10 5 5 hpa(1/10) deployment 5 定时和当前一致,无需变更
1/10 4 5 hpa(1/10) deployment 5 当前高于定时,保留当前副本
1/10 6 5 hpa(6/10) deployment 6 定时高于当前,保留定时副本
定时高于HPA下限,修改HPA下限
5/10 4 5 hpa(4/10) deployment 5 定时低于当前,保留当前副本
定时低于HPA下限,修改HPA下限
5/10 11 5 hpa(11/11) deployment 11 定时高于当前,保留定时副本
定时高于HPA上限,修改HPA上限

如上图所以,CronHPA会通过调整HPA的方式进行感知,CronHPA要达到的副本和当前副本取大值,来判断是否要扩容以及修改HPA的上限。CronHPA要达到的副本和HPA的配置取小值,判断是否要修改HPA的下限。简单而言,CronHPA不会直接调整Deployment的副本数目,而是通过HPA来操作Deployment,这样就可以避免HPA和CronHPA的冲突问题了。

最后

定时伸缩CronHPA和HPA都是在线业务场景下非常重要的功能,不论使用何种的兼容与适配的方式,稳定性第一的原则是不能改变的,开发者如果对CronHPA感兴趣,欢迎提交PR

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
3月前
|
存储 Kubernetes 持续交付
介绍一下Kubernetes的应用场景
【10月更文挑战第18天】介绍一下Kubernetes的应用场景。
237 3
|
4天前
|
人工智能 运维 监控
容器服务Kubernetes场景下可观测体系生产级最佳实践
阿里云容器服务团队在2024年继续蝉联Gartner亚洲唯一全球领导者象限,其可观测体系是运维的核心能力之一。该体系涵盖重保运维、大规模集群稳定性、业务异常诊断等场景,特别是在AI和GPU场景下提供了全面的观测解决方案。通过Tracing、Metric和Log等技术,阿里云增强了对容器网络、存储及多集群架构的监控能力,帮助客户实现高效运维和成本优化。未来,结合AI助手,将进一步提升问题定位和解决效率,缩短MTTR,助力构建智能运维体系。
|
5月前
|
Kubernetes API 调度
Kubernetes 架构解析:理解其核心组件
【8月更文第29天】Kubernetes(简称 K8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用。它提供了一个可移植、可扩展的环境来运行分布式系统。本文将深入探讨 Kubernetes 的架构设计,包括其核心组件如何协同工作以实现这些功能。
424 0
|
2月前
|
Prometheus Kubernetes 监控
深入探索Kubernetes中的Pod自动扩展(Horizontal Pod Autoscaler, HPA)
深入探索Kubernetes中的Pod自动扩展(Horizontal Pod Autoscaler, HPA)
|
3月前
|
Prometheus Kubernetes 监控
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
147 1
k8s学习--kubernetes服务自动伸缩之水平伸缩(pod副本伸缩)HPA详细解释与案例应用
|
4月前
|
Kubernetes 容器
Kubernetes附加组件Dashboard部署实战篇
关于如何在Kubernetes集群中部署和配置Dashboard组件的详细实战指南,涵盖了从创建证书、部署Dashboard、设置服务访问到登录认证的完整流程。
554 0
Kubernetes附加组件Dashboard部署实战篇
|
5月前
|
存储 Kubernetes API
在K8S中,etcd 适应的场景?
在K8S中,etcd 适应的场景?
|
5月前
|
存储 Kubernetes API
在K8S中,Kubernetes的组件有哪些?
在K8S中,Kubernetes的组件有哪些?
|
5月前
|
Kubernetes 容器 Perl
在K8S中,Deployment⽀持扩容吗?它与HPA有什么区别?
在K8S中,Deployment⽀持扩容吗?它与HPA有什么区别?
|
5月前
|
Kubernetes 调度 容器
k8s descheduler 组件安装
k8s descheduler 组件安装

相关产品

  • 容器服务Kubernetes版