python 结巴分词(jieba)学习

简介: 来源:http://www.gowhich.com/blog/147?utm_source=tuicool&utm_medium=referral 源码下载的地址:https://github.com/fxsjy/jieba 演示地址:http://jiebademo.ap01.aws.af.cm/ 特点 1,支持三种分词模式:     a,精确模式,试图将句

来源:http://www.gowhich.com/blog/147?utm_source=tuicool&utm_medium=referral

源码下载的地址:https://github.com/fxsjy/jieba

演示地址:http://jiebademo.ap01.aws.af.cm/

特点

1,支持三种分词模式:

    a,精确模式,试图将句子最精确地切开,适合文本分析;
    b,全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
    c,搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

2,支持繁体分词

3,支持自定义词典

安装

1,Python 2.x 下的安装

全自动安装 :easy_install jieba 或者 pip install jieba
半自动安装 :先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install
手动安装 :将jieba目录放置于当前目录或者site-packages目录
通过import jieba 来引用

2,Python 3.x 下的安装

目前master分支是只支持Python2.x 的
Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k

git clone https://github.com/fxsjy/jieba.git
git checkout jieba3k
python setup.py install

算法实现:

基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)
采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法

功能

功能 1):分词

    jieba.cut方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all参数用来控制是否采用全模式
    jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
    注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
    jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list
代码示例( 分词 )

#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print "Full Mode:", "/ ".join(seg_list)  # 全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print "Default Mode:", "/ ".join(seg_list)  # 精确模式
seg_list = jieba.cut("他来到了网易杭研大厦")  # 默认是精确模式
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式
print ", ".join(seg_list)
Output:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

功能 2) :添加自定义词典

开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率
用法:

jieba.load_userdict(file_name) # file_name为自定义词典的路径
词典格式和dict.txt一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开
范例:
自定义词典:
云计算 5
李小福 2 nr
创新办 3 i
easy_install 3 eng
好用 300
韩玉赏鉴 3 nz
用法示例:
#encoding=utf-8
import sys
sys.path.append("../")
import jieba
jieba.load_userdict("userdict.txt")
import jieba.posseg as pseg

test_sent = "李小福是创新办主任也是云计算方面的专家;"
test_sent += "例如我输入一个带“韩玉赏鉴”的标题,在自定义词库中也增加了此词为N类型"
words = jieba.cut(test_sent)
for w in words:
print w

result = pseg.cut(test_sent)

for w in result:
print w.word, "/", w.flag, ", ",

print "\n========"

terms = jieba.cut('easy_install is great')
for t in terms:
    print t
print '-------------------------'
terms = jieba.cut('python 的正则表达式是好用的')
for t in terms:
    print t
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
"通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14

功能 3) :关键词提取

jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse

说明

setence为待提取的文本

topK为返回几个TF/IDF权重最大的关键词,默认值为20
代码示例 (关键词提取)

import sys
sys.path.append('../')

import jieba
import jieba.analyse
from optparse import OptionParser

USAGE = "usage: python extract_tags.py [file name] -k [top k]"

parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args()


if len(args) < 1:
    print USAGE
    sys.exit(1)

file_name = args[0]

if opt.topK is None:
    topK = 10
else:
    topK = int(opt.topK)

content = open(file_name, 'rb').read()

tags = jieba.analyse.extract_tags(content, topK=topK)

print ",".join(tags)

功能 4) : 词性标注

标注句子分词后每个词的词性,采用和ictclas兼容的标记法
用法示例

>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for w in words:
...    print w.word, w.flag
...
我 r
爱 v
北京 ns
天安门 ns

功能 5) : 并行分词

原理:将目标文本按行分隔后,把各行文本分配到多个python进程并行分词,然后归并结果,从而获得分词速度的可观提升
基于python自带的multiprocessing模块,目前暂不支持windows
用法:

jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
jieba.disable_parallel() # 关闭并行分词模式
例子:
import urllib2
import sys,time
import sys
sys.path.append("../../")
import jieba
jieba.enable_parallel(4)

url = sys.argv[1]
content = open(url,"rb").read()
t1 = time.time()
words = list(jieba.cut(content))

t2 = time.time()
tm_cost = t2-t1

log_f = open("1.log","wb")
for w in words:
print >> log_f, w.encode("utf-8"), "/" ,

print 'speed' , len(content)/tm_cost, " bytes/second"
实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。

其他词典

占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
下载你所需要的词典,然后覆盖jieba/dict.txt 即可或者用jieba.set_dictionary('data/dict.txt.big')

模块初始化机制的改变:lazy load (从0.28版本开始)

jieba采用延迟加载,"import jieba"不会立即触发词典的加载,一旦有必要才开始加载词典构建trie。如果你想手工初始jieba,也可以手动初始化。

import jieba
jieba.initialize()  # 手动初始化(可选)
在0.28之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:
jieba.set_dictionary('data/dict.txt.big')
例子: 
#encoding=utf-8
import sys
sys.path.append("../")
import jieba

def cuttest(test_sent):
result = jieba.cut(test_sent)
print " ".join(result)

def testcase():
cuttest("这是一个伸手不见五指的黑夜。我叫孙悟空,我爱北京,我爱Python和C++。")
cuttest("我不喜欢日本和服。")
cuttest("雷猴回归人间。")
cuttest("工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作")
cuttest("我需要廉租房")
cuttest("永和服装饰品有限公司")
cuttest("我爱北京天安门")
cuttest("abc")
cuttest("隐马尔可夫")
cuttest("雷猴是个好网站")

if __name__ == "__main__":
testcase()
jieba.set_dictionary("foobar.txt")
print "================================"
testcase()


目录
相关文章
|
26天前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
211 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
24天前
|
机器学习/深度学习 人工智能 架构师
Python学习圣经:从0到1,精通Python使用
尼恩架构团队的大模型《LLM大模型学习圣经》是一个系统化的学习系列,初步规划包括以下内容: 1. **《Python学习圣经:从0到1精通Python,打好AI基础》** 2. **《LLM大模型学习圣经:从0到1吃透Transformer技术底座》**
Python学习圣经:从0到1,精通Python使用
|
26天前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
303 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
29天前
|
开发者 Python
Python学习九:file操作
这篇文章是关于Python文件操作的详细教程,包括文件的打开、读写、关闭,以及文件备份脚本的编写和文件定位操作。
17 2
|
29天前
|
Java C# Python
Python学习七:面向对象编程(中)
这篇文章是关于Python面向对象编程的中级教程,涵盖了析构函数、对象的三大特征(封装、继承、多态)、类属性与实例属性、以及类方法与静态方法的对比。
21 2
|
29天前
|
设计模式 安全 JavaScript
Python学习八:面向对象编程(下):异常、私有等
这篇文章详细介绍了Python面向对象编程中的私有属性、私有方法、异常处理及动态添加属性和方法等关键概念。
20 1
|
29天前
|
存储 Java 编译器
Python学习三:学习python的 变量命名规则,算数、比较、逻辑、赋值运算符,输入与输出。
这篇文章是关于Python编程语言中变量命名规则、基本数据类型、算数运算符、比较运算符、逻辑运算符、赋值运算符以及格式化输出与输入的详细教程。
18 0
Python学习三:学习python的 变量命名规则,算数、比较、逻辑、赋值运算符,输入与输出。
|
29天前
|
资源调度 前端开发 JavaScript
Python学习二:Python包管理器pip
这篇文章介绍了Python包管理器pip的基本概念、基本操作、如何更改下载源为国内镜像以加速下载,以及如何指定安装包的位置。
28 0
Python学习二:Python包管理器pip
|
1月前
|
设计模式 运维 安全
Python学习—装饰器的力量 (一)
Python学习—装饰器的力量 (一)
|
23天前
|
机器学习/深度学习 人工智能 架构师
Python学习圣经:从入门到精通Python,打好 LLM大模型的基础
Python学习圣经:从0到1精通Python,打好AI基础
下一篇
无影云桌面