java 会默认做的那些事

简介:

这是一个基础类的源码文件

public class Demo {
    public static void main(String[] args) {
        System.out.println("HelloWorld!");
    }
}

反编译过后的

# javap -c Demo
Compiled from "Demo.java"
public class Demo extends java.lang.Object{
public Demo();
  Code:
   0:   aload_0
   1:   invokespecial   #1; //Method java/lang/Object."<init>":()V
   4:   return

public static void main(java.lang.String[]);
  Code:
   0:   getstatic       #2; //Field java/lang/System.out:Ljava/io/PrintStream;
   3:   ldc     #3; //String helloWorld!
   5:   invokevirtual   #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V
   8:   return

}

反编译过后可以看到

  • 自定义一个类会默认继承 java.lang.Object, 这也是 Object 利用多态能接受任意对象的原因
  • 一个类中会默认有一个构造方法,他的默认实现是调用到父类的空构造方法
  • 当你自定义了一个构造方法后jdk就不会默认给你加空构造了
  • 这里要注意构造方法中super(...)一定是第一行代码,就算你不写super(...)她会默认调用父类的空构造

接下来在来看一段源码

import java.util.Arrays;
import java.util.List;

public class Demo {
    public static void main(String[] args) {
        List<String> list = Arrays.asList("Java", "JavaME", "JavaSE", "JavaEE");
        String data = "";
        for (String s : list) {
            data += s + ",";
        }
        System.out.println(data);
    }
}

反编译后的结果为

# javap -c Demo
Compiled from "Demo.java"
public class Demo extends java.lang.Object{
public Demo();
  Code:
   0:   aload_0
   1:   invokespecial   #1; //Method java/lang/Object."<init>":()V
   4:   return

public static void main(java.lang.String[]);
  Code:
   0:   iconst_4
   1:   anewarray       #2; //class java/lang/String
   4:   dup
   5:   iconst_0
   6:   ldc     #3; //String Java
   8:   aastore
   9:   dup
   10:  iconst_1
   11:  ldc     #4; //String JavaME
   13:  aastore
   14:  dup
   15:  iconst_2
   16:  ldc     #5; //String JavaSE
   18:  aastore
   19:  dup
   20:  iconst_3
   21:  ldc     #6; //String JavaEE
   23:  aastore
   24:  invokestatic    #7; //Method java/util/Arrays.asList:([Ljava/lang/Object;)Ljava/util/List;
   27:  astore_1
   28:  ldc     #8; //String
   30:  astore_2
   31:  aload_1
   32:  invokeinterface #9,  1; //InterfaceMethod java/util/List.iterator:()Ljava/util/Iterator;
   37:  astore_3
   38:  aload_3
   39:  invokeinterface #10,  1; //InterfaceMethod java/util/Iterator.hasNext:()Z
   44:  ifeq    86
   47:  aload_3
   48:  invokeinterface #11,  1; //InterfaceMethod java/util/Iterator.next:()Ljava/lang/Object;
   53:  checkcast       #2; //class java/lang/String
   56:  astore  4
   58:  new     #12; //class java/lang/StringBuilder
   61:  dup
   62:  invokespecial   #13; //Method java/lang/StringBuilder."<init>":()V
   65:  aload_2
   66:  invokevirtual   #14; //Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
   69:  aload   4
   71:  invokevirtual   #14; //Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
   74:  ldc     #15; //String ,
   76:  invokevirtual   #14; //Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
   79:  invokevirtual   #16; //Method java/lang/StringBuilder.toString:()Ljava/lang/String;
   82:  astore_2
   83:  goto    38
   86:  getstatic       #17; //Field java/lang/System.out:Ljava/io/PrintStream;
   89:  aload_2
   90:  invokevirtual   #18; //Method java/io/PrintStream.println:(Ljava/lang/String;)V
   93:  return

}

从反编译中能看出

  • 关于字符串拼接

    • 在少量字符串拼接时jdk会默认给我们转成StringBuilder来实现,这也是为什么少量字符串拼接可以使用String对象的原因
  • 在使用 for (String s : list) {}

    • 会默认调用到java.util.Iterator接口中的方法
    • 我们自定义类如果想使用这种迭代方式就需要满足一下两种条件

      • 是集合架构中的一员
      • 自定义实现Iterator中的方法

自定义枚举类

public enum Demo {

    SUCCESS(0, "成功"),
    ERROR(1, "失败");

    private Integer code;
    private String msg;

    Demo(Integer code, String msg) {
        this.code = code;
        this.msg = msg;
    }

}

反编译枚举后可以看到

# javap Demo
Compiled from "Demo.java"
public final class Demo extends java.lang.Enum{
    public static final Demo SUCCESS;
    public static final Demo ERROR;
    public static final Demo[] values();
    public static Demo valueOf(java.lang.String);
    static {};
}

从反编译结果中可以看到

  • 枚举类实际上是一个加了 final class 他会默认继承自java.lang.Enum
  • 每一个枚举类型都会转成 public static final 的对象

自定义注解

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface Demo {

    String value();

}

反编译的结果

# javap Demo
Compiled from "Demo.java"
public interface Demo extends java.lang.annotation.Annotation{
    public abstract java.lang.String value();
}

从反编译结果中可以看出

  • 可以看出注解会默认继承java.lang.annotation.Annotation
  • 一个属性就是一个抽象方法

还有一些常识

  • Java 会默认导入 java.lang

    • 这个自动导入使得我们在使用 Integer,Object,System 等类的时候不需要手动导包
  • System.out.println(); 的时候会默认调用到对象中的 toString(); 方法
  • HashSet在存储时会默认调用到对象的hashCode()::equals()方法

    • HashSet 在判断元素重复时借助了hashCode()的hash算法来筛选掉一批不重复的数据
    • 在hash值相等的时候在借助equals()判断是否重复如果重复就不录入了
    • 为什么要使用到两个方法来判断是否重复这里是hash算法的一个特点了, 在HashMap中如果hash值相等值不相等就会在hash表中形成一个hash链
  • TreeSet在存储时,要求元素实现Comparable接口

    • TreeSet使用了树状结构需要使用到 java.lang.Comparable#compareTo 方法的返回值
    • 通过返回来决定元素是否重复: [0元素重复,<0左子树,>0右子树]

Integer 的自动封装和catch

先来看一段源码代码

Integer val1 = 1;
Integer val2 = 1;
System.out.println(val1 == val2);

Integer val3 = 996;
Integer val4 = 996;
System.out.println(val3 == val4);

反编译结果

# javap -c Demo
Compiled from "Demo.java"
public class Demo {
  public Demo();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return

  public static void main(java.lang.String[]);
    Code:
       0: iconst_1
       1: invokestatic  #2                  // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
       4: astore_1
       5: iconst_1
       6: invokestatic  #2                  // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
       9: astore_2
      10: getstatic     #3                  // Field java/lang/System.out:Ljava/io/PrintStream;
      13: aload_1
      14: aload_2
      15: if_acmpne     22
      18: iconst_1
      19: goto          23
      22: iconst_0
      23: invokevirtual #4                  // Method java/io/PrintStream.println:(Z)V
      26: sipush        996
      29: invokestatic  #2                  // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
      32: astore_3
      33: sipush        996
      36: invokestatic  #2                  // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
      39: astore        4
      41: getstatic     #3                  // Field java/lang/System.out:Ljava/io/PrintStream;
      44: aload_3
      45: aload         4
      47: if_acmpne     54
      50: iconst_1
      51: goto          55
      54: iconst_0
      55: invokevirtual #4                  // Method java/io/PrintStream.println:(Z)V
      58: return
}
  • 在Integer类型自动拆装箱实际上是使用了Integer.valueOf()方法
  • 我们可以通过了解 valueOf() 的源码来理解 Integer -128~127缓存

Integer.valueOf() 的实现

public static Integer valueOf(int i) {
    if (i >= IntegerCache.low && i <= IntegerCache.high)
        return IntegerCache.cache[i + (-IntegerCache.low)];
    return new Integer(i);
}

Integer缓存核心实现

private static class IntegerCache {
    static final int low = -128;
    static final int high;
    static final Integer cache[];

    static {
        // high value may be configured by property
        int h = 127;
        String integerCacheHighPropValue =
            sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
        if (integerCacheHighPropValue != null) {
            try {
                int i = parseInt(integerCacheHighPropValue);
                i = Math.max(i, 127);
                // Maximum array size is Integer.MAX_VALUE
                h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
            } catch( NumberFormatException nfe) {
                // If the property cannot be parsed into an int, ignore it.
            }
        }
        high = h;

        cache = new Integer[(high - low) + 1];
        int j = low;
        for(int k = 0; k < cache.length; k++)
            cache[k] = new Integer(j++);

        // range [-128, 127] must be interned (JLS7 5.1.7)
        assert IntegerCache.high >= 127;
    }

    private IntegerCache() {}
}

内部类访问变量时的隐式操作

public static void main(String[] args) {
    String str = "hello";
    new Transfer() {
        @Override
        void transfer() {
            System.out.println(str);
            str = "world!";
            System.out.println(str);
        }
    }.transfer();
}

public static abstract class Transfer {
    abstract void transfer();
}
  • 在案例中 String 类型的 str 实际上会隐式的给我们加上 final 修饰
目录
相关文章
|
21天前
|
Java 开发者
Java多线程编程中的常见误区与最佳实践####
本文深入剖析了Java多线程编程中开发者常遇到的几个典型误区,如对`start()`与`run()`方法的混淆使用、忽视线程安全问题、错误处理未同步的共享变量等,并针对这些问题提出了具体的解决方案和最佳实践。通过实例代码对比,直观展示了正确与错误的实现方式,旨在帮助读者构建更加健壮、高效的多线程应用程序。 ####
|
12天前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
10天前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
12天前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
6天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
6天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
23 3
|
7天前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
12天前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
37 5
|
10天前
|
监控 Java 数据库连接
Java线程管理:守护线程与用户线程的区分与应用
在Java多线程编程中,线程可以分为守护线程(Daemon Thread)和用户线程(User Thread)。这两种线程在行为和用途上有着明显的区别,了解它们的差异对于编写高效、稳定的并发程序至关重要。
19 2
|
10天前
|
监控 Java 开发者
Java线程管理:守护线程与本地线程的深入剖析
在Java编程语言中,线程是程序执行的最小单元,它们可以并行执行以提高程序的效率和响应性。Java提供了两种特殊的线程类型:守护线程和本地线程。本文将深入探讨这两种线程的区别,并探讨它们在实际开发中的应用。
15 1