K8S从懵圈到熟练 – 这么理解集群控制器,能行!

简介: 当我们尝试去理解K8S集群工作原理的时候,控制器肯定是一个难点。这是因为控制器有很多,具体实现大相径庭;且控制器的实现用到了一些较为晦涩的机制,不易理解。但是,我们又不能绕过控制器,因为它是集群的“大脑”。

作者:shengdong

当我们尝试去理解K8S集群工作原理的时候,控制器肯定是一个难点。这是因为控制器有很多,具体实现大相径庭;且控制器的实现用到了一些较为晦涩的机制,不易理解。但是,我们又不能绕过控制器,因为它是集群的“大脑”。今天这篇文章,我们通过分析一个简易冰箱的设计过程,来深入理解集群控制器的产生,功能以及实现方法。

大图

下图是K8S集群的核心组件,包括数据库etcd,调度器scheduler,集群入口API Server,控制器Controller,服务代理kube-proxy以及直接管理具体业务容器的kubelet。这些组件逻辑上可以被分为三个部分:核心组件etc数据库,对etcd进行直接操作的入口组件API Server,以及其他组件。这里的“其他组件”之所以可以被划分为一类,是因为它们都可以被看做是集群的控制器。

1.1.png

今天我们要讲的就是集群控制器原理。

控制器原理

虽然控制器是K8S集群中比较复杂的组件,但控制器本身对我们来说并不陌生的。我们每天使用的洗衣机、冰箱、空调等,都是依靠控制器才能正常工作。在控制器原理这一节,我们通过思考一个简易冰箱的设计过程,来理解K8S集群控制器的原理。

简易的冰箱

这个冰箱包括五个组件:箱体、制冷系统、照明系统、温控器以及门。冰箱只有两个功能:当有人打开冰箱门的时候,冰箱内的灯会自动开启;当有人按下温控器的时候,制冷系统会根据温度设置,调节冰箱内温度。

1.2.png

统一入口

对于上边的冰箱,我们可以简单抽象成两个部分:统一的操作入口和冰箱的所有组件。在这里,用户只有通过入口,才能操作冰箱。这个入口提供给用户两个接口:开关门和调节温控器。用户执行这两个接口的时候,入口会分别调整冰箱门和温控器的状态。

1.3.png

控制器

控制器就是为了解决上边的问题产生的。控制器就是用户的操作,和冰箱各个组件的正确状态之间的一座桥梁:当用户打开门的时候,控制器观察到了门的变化,它替用户打开冰箱内的灯;当用户按下温控器的时候,控制器观察到了用户设置的温度,它替用户管理制冷系统,调节冰箱内温度。

1.4.png

控制器管理器

冰箱有照明系统和制冷系统,显然相比一个控制器管理着两个组件,我们替每个组件分别实现一个控制器是更为合理的选择。同时我们实现一个控制器管理器来统一维护所有这些控制器,来保证这些控制器在正常工作。

1.5.png

SharedInformer

上边的控制器和控制器管理器,看起来已经相当不错了。但是当冰箱功能增加,势必有很多新的控制器加进来。这些控制器都需要通过冰箱入口,时刻监控自己关心的组件的状态变化。比如照明系统控制器就需要时刻监控冰箱门的状态。当大量控制器不断的和入口通信的时候,就会增加入口的压力。
这个时候,我们把监控冰箱组件状态变化这件事情,交给一个新的模块SharedInformer来实现。SharedInformer作为控制器的代理,替控制器监控冰箱组件的状态变化,并根据控制器的喜好,把不同组件状态的变化,通知给对应的控制器。通过优化,这样的SharedInformer可以极大的缓解冰箱入口的压力。

1.6.png

ListWatcher

1.7.png

假设SharedInformer和冰箱入口通过http协议通信的话,那么http分块编码(chunked transfer encoding)就是实现ListWatcher的一个好的选择。控制器通过ListWatcher给冰箱入口发送一个查询然后等待,当冰箱组件有变化的时候,入口通过分块的http响应通知控制器。控制器看到chunked响应,会认为响应数据还没有发送完成,所以会持续等待。

1.8.png

举例

以上我们从一个简易冰箱的进化过程中,了解了控制器产生的意义,扮演的角色,以及实现的方式。现在我们回到K8S集群。K8S集群实现了大量的控制器,而且在可以预见的未来,新的功能的控制器会不断出现,而一些旧的控制器也会被逐渐淘汰。
目前来说,我们比较常用的控制器,如pod控制器、deployment控制器、service控制器、replicaset控制器等。这些控制器一部分是由kube controller manager这个管理器实现和管理,而像route控制器和service控制器,则由cloud controller manager实现。
之所以会出现cloud controller manager,是因为在不同的云环境中,一部分控制器的实现,会因为云厂商、云环境的不同,出现很大的差别。这类控制器被划分出来,由云厂商各自基于cloud controller manager分别实现。
这里我们以阿里云K8S集群cloud controller manager实现的route控制器和service控制器为例,简单说明K8S控制器的工作原理。

服务控制器

首先,用户请求API Server创建一个LoadBalancer类型的服务,API Server收到请求并把这个服务的详细信息写入etcd数据库。而这个变化,被服务控制器观察到了。服务控制器理解LoadBalancer类型的服务,除了包括存放在etcd内部的服务记录之外,还需要一个SLB作为服务入口,以及若干endpoints作为服务后端。所以服务控制器分别请求SLB的云openapi和API Server,来创建云上SLB资源,和集群内endpoints资源。

1.9.png

路由控制器

在集群网络一章中,我们提到过,当一个节点加入一个K8S集群的时候,集群需要在VPC路由表里增加一条路由,来搭建这个新加入节点到pod网络的主干道。而这件事情,就是路由控制器来做的。路由控制器完成这件事情的流程,与上边服务控制器的处理流程非常类似,这里不再赘述。

1.10.png

结束语

基本上来说,K8S集群的控制器,其实扮演着集群大脑的角色。有了控制器,K8S集群才有机会摆脱机械和被动,变成一个自动、智能、有大用的系统。

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
2月前
|
人工智能 算法 调度
阿里云ACK托管集群Pro版共享GPU调度操作指南
本文介绍在阿里云ACK托管集群Pro版中,如何通过共享GPU调度实现显存与算力的精细化分配,涵盖前提条件、使用限制、节点池配置及任务部署全流程,提升GPU资源利用率,适用于AI训练与推理场景。
296 1
|
2月前
|
弹性计算 监控 调度
ACK One 注册集群云端节点池升级:IDC 集群一键接入云端 GPU 算力,接入效率提升 80%
ACK One注册集群节点池实现“一键接入”,免去手动编写脚本与GPU驱动安装,支持自动扩缩容与多场景调度,大幅提升K8s集群管理效率。
261 89
|
7月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
ACK One 的多集群应用分发,可以最小成本地结合您已有的单集群 CD 系统,无需对原先应用资源 YAML 进行修改,即可快速构建成多集群的 CD 系统,并同时获得强大的多集群资源调度和分发的能力。
297 9
|
7月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
本文介绍如何利用阿里云的分布式云容器平台ACK One的多集群应用分发功能,结合云效CD能力,快速将单集群CD系统升级为多集群CD系统。通过增加分发策略(PropagationPolicy)和差异化策略(OverridePolicy),并修改单集群kubeconfig为舰队kubeconfig,可实现无损改造。该方案具备多地域多集群智能资源调度、重调度及故障迁移等能力,帮助用户提升业务效率与可靠性。
344 10
|
9月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
890 33
|
9月前
|
Kubernetes 开发者 Docker
集群部署:使用Rancher部署Kubernetes集群。
以上就是使用 Rancher 部署 Kubernetes 集群的流程。使用 Rancher 和 Kubernetes,开发者可以受益于灵活性和可扩展性,允许他们在多种环境中运行多种应用,同时利用自动化工具使工作负载更加高效。
520 19
|
9月前
|
人工智能 分布式计算 调度
打破资源边界、告别资源浪费:ACK One 多集群Spark和AI作业调度
ACK One多集群Spark作业调度,可以帮助您在不影响集群中正在运行的在线业务的前提下,打破资源边界,根据各集群实际剩余资源来进行调度,最大化您多集群中闲置资源的利用率。
|
12月前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。
|
9月前
|
Prometheus Kubernetes 监控
OpenAI故障复盘丨如何保障大规模K8s集群稳定性
OpenAI故障复盘丨如何保障大规模K8s集群稳定性
336 0
OpenAI故障复盘丨如何保障大规模K8s集群稳定性
|
11月前
|
缓存 容灾 网络协议
ACK One多集群网关:实现高效容灾方案
ACK One多集群网关可以帮助您快速构建同城跨AZ多活容灾系统、混合云同城跨AZ多活容灾系统,以及异地容灾系统。

推荐镜像

更多