类的定义 | Python从入门到精通:高阶篇之二十二

简介: 类和对象都是对现实生活中或程序中的内容的抽象。实际上所有的事物都是由两部分组成:数据(属性)和行为(方法)。在类的代码块中,我们可以定义变量和函数,变量会成为该类实例的公共属性;函数会成为该类实例的公共方法。

类的定义

类和对象都是对现实生活中或程序中的内容的抽象。
实际上所有的事物都是由两部分组成:
1、数据(属性)
2、行为(方法)

接下来尝试定义一个类:

class Person :
pass

#创建Person的实例
p1=Person() #空的实例,没有内容
p2=Person()

此时在内存中的存放类似下图:
image.png

定义变量

在类的代码块中,我们可以定义变量和函数,变量会成为该类实例的公共属性,所有的该类实例都可以通过 对象.属性名 的形式访问。

class Person :
    name = 'swk'
p1 = Person()
p2 = Person()
print(p2.name)#访问的是‘swk’

image.png
此时name为公共属性,所有实例都可以访问。比如p2.name访问的就是swk这样一个名字。

定义函数

在类中也可以定义函数,类中的定义的函数,我们称为该类实例的公共方法。所有的该类实例都可以通过 对象.方法名() 的形式调用方法。

class Person :
    name = 'swk'
    def say_hello(a) :
        print('你好!')
p1 = Person()
p2 = Person()
#print(p2.name)
#调用方法:对象.方法名
p1.say_hello() # p1调用方法say_hello()

这里延伸一下方法调用和函数调用的区别

如果是函数调用,则调用时传几个参数,就会有几个实参。

但是如果是方法调用,默认传递一个参数,所以方法中至少要定义一个形参。所以要在方法say_hello()中定义一个参数,占位用的a。

此时内存的变化如下:
image.png
执行结果为:
image.png

注意:
方法调用时,第一个参数由解析器自动传递,所以定义方法时,至少要定义一个形参!!

点击查看配套学习视频

获取更多内容请订阅Python学习站官方技术圈!

相关文章
|
26天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
27天前
|
Python
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
51 11
|
24天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
24天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
1月前
|
传感器 物联网 机器人
定义微Python
MicroPython 是一种精简高效的 Python 解释器,专为微控制器和嵌入式系统设计,支持通过 Python 代码进行快速开发和调试。它具有低资源消耗的特点,适用于物联网设备。
102 62
|
24天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
29天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
84 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
14天前
|
设计模式 缓存 开发者
Python中的装饰器:从入门到实践####
本文深入探讨了Python中强大的元编程工具——装饰器,它能够以简洁优雅的方式扩展函数或方法的功能。通过具体实例和逐步解析,文章不仅介绍了装饰器的基本原理、常见用法及高级应用,还揭示了其背后的设计理念与实现机制,旨在帮助读者从理论到实战全面掌握这一技术,提升代码的可读性、可维护性和复用性。 ####
|
23天前
|
设计模式 缓存 开发框架
Python中的装饰器:从入门到实践####
本文深入探讨了Python中装饰器的工作原理与应用,通过具体案例展示了如何利用装饰器增强函数功能、提高代码复用性和可读性。读者将学习到装饰器的基本概念、实现方法及其在实际项目开发中的实用技巧。 ####
26 3
|
26天前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据科学中的应用:从入门到实践
本文旨在为读者提供一个Python在数据科学领域应用的全面概览。我们将从Python的基础语法开始,逐步深入到数据处理、分析和可视化的高级技术。文章不仅涵盖了Python中常用的数据科学库,如NumPy、Pandas和Matplotlib,还探讨了机器学习库Scikit-learn的使用。通过实际案例分析,本文将展示如何利用Python进行数据清洗、特征工程、模型训练和结果评估。此外,我们还将探讨Python在大数据处理中的应用,以及如何通过集成学习和深度学习技术来提升数据分析的准确性和效率。