阿里云视觉智能开放平台【人脸人体类目】上线多个AI能力,快来了解下!

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 为了帮助开发者将视觉Ai能力应用到更多的场景中,阿里云视觉智能开放平台(vision.aliyun.com)近期上线了多项和视觉相关的AI能力,快来了解下吧!

  尊敬的开发者您好,感谢您对阿里云视觉智能开放平台(vision.aliyun.com)的支持,近期人脸人体类目上线了五个算法能力,分别是口罩检测、人脸活体检测、表情识别、公众人脸识别以及人体计数,接下来给您逐一介绍下。

  • 口罩检测:【跳转链接
    由于疫情原因,在二月我们紧急上线了此能力,通过此能力可以识别输入图片中占比最大的人脸是否有戴口罩,可应用在对各种场所的人员口罩佩戴情况进行监测。

1.png

  • 人脸活体检测:【跳转链接
    识别输入图片中的活体对象(主要是人脸),用来检测是来自直接拍摄还是翻拍。可应用在互联网金融、税务、社保、电信、医疗等行业。

活体111.jpg

  • 表情识别:【跳转链接
    识别图片中的人脸表情, 表情种类为:neutral(中性), happiness(高兴), surprise(惊讶), sadness(伤心), anger(生气), disgust(厌恶), fear(害怕)。可应用在心理学、智能监控、虚拟现实及合成动画等领域。

生气.png

  • 公众人脸识别:【跳转链接
    识别输入图片中的一个或多个公众人脸信息。可用于公众人物鉴定,例如检测发布的内容是否有侵犯肖像权。
  • 人体计数:【跳转链接
    识别输入图片中的人体数量。可用于人数统计,例如合照人数、班级人数等。

如果你想了解其他类目的更新情况可点击下方链接进行跳转:
【目标检测】:跳转链接
【其他类目】:跳转链接

  以上就是人脸人体类目此次更新的主要内容,如果您对我们的产品感兴趣,可点击下方链接访问我们的官网进行体验,也可搜索钉钉群23109592或是扫描文章结尾的钉群二维码,进群和我们沟通!
官网地址:https://vision.aliyun.com/
群二维码.jpg

相关文章
|
2天前
|
人工智能 架构师
活动火热报名中|阿里云&Elastic:AI Search Tech Day
2024年11月22日,阿里云与Elastic联合举办“AI Search Tech Day”技术思享会活动。
|
2天前
|
存储 人工智能 大数据
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
6天前
|
人工智能 Kubernetes 云计算
第五届CID大会成功举办,阿里云基础设施加速AI智能产业发展!
2024年10月19日,第五届中国云计算基础架构开发者大会(CID)在北京朗丽兹西山花园酒店成功举办。本次大会汇聚了来自云计算领域的众多精英,不同背景的与会者齐聚一堂,共同探讨云计算技术的最新发展与未来趋势。
|
6天前
|
人工智能 Kubernetes 云计算
第五届CID大会成功举办,阿里云基础设施加速AI智能产业发展!
第五届中国云计算基础架构开发者大会(CID)于2024年10月19日在北京成功举办。大会汇聚了300多位现场参会者和超过3万名在线观众,30余位技术专家进行了精彩分享,涵盖高效部署大模型推理、Knative加速AI应用Serverless化、AMD平台PMU虚拟化技术实践、Kubernetes中全链路GPU高效管理等前沿话题。阿里云的讲师团队通过专业解读,为与会者带来了全新的视野和启发,推动了云计算技术的创新发展。
|
7天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。随着卷积神经网络(CNN)的发展,图像识别的准确性和效率得到了显著提升。然而,数据不平衡、模型泛化能力、计算资源消耗等问题仍然是制约深度学习在图像识别领域进一步发展的关键因素。本文将详细介绍深度学习在图像识别中的应用案例,并讨论解决现有挑战的可能策略。
|
1天前
|
机器学习/深度学习 算法 TensorFlow
深度学习中的图像识别技术
【10月更文挑战第34天】本文将探讨深度学习在图像识别领域的应用,并介绍如何利用Python和TensorFlow库实现一个简单的图像分类模型。我们将从基本原理出发,逐步讲解数据准备、模型构建、训练过程以及结果评估等关键步骤。通过本文的学习,读者可以了解到深度学习在图像识别中的强大能力,并掌握如何使用现代工具和技术来解决实际问题。
11 2
|
4天前
|
机器学习/深度学习 传感器 监控
深度学习在图像识别中的突破与应用
随着人工智能的飞速发展,深度学习已经成为推动图像识别技术进步的核心动力。本文旨在探讨深度学习在图像识别领域的最新突破及其广泛应用,通过分析卷积神经网络(CNN)等关键技术的发展,揭示深度学习如何革新传统图像处理方式,提升识别精度和效率。文章还将概述当前面临的挑战与未来发展趋势,为读者提供一个全面而深入的技术视角。
|
9天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
本文探讨了深度学习在图像识别领域的应用现状,分析了其面临的主要技术挑战和解决方案。通过对比传统方法和深度学习模型的优势,揭示了深度学习如何推动图像识别技术的发展,并展望了未来的研究方向。
|
6天前
|
机器学习/深度学习 分布式计算 自动驾驶
深度学习在图像识别中的革命性应用####
【10月更文挑战第29天】 本文深入探讨了深度学习技术如何彻底革新图像识别领域,通过卷积神经网络(CNN)的架构优化、数据集增强策略及迁移学习的应用,显著提升了图像分类与目标检测的准确率。文章概述了深度学习模型训练的关键挑战,如过拟合、计算资源依赖性,并提出了创新性解决方案,包括正则化技术、分布式计算框架及自适应学习率调整策略。强调了深度学习在自动驾驶、医疗影像分析等领域的广阔应用前景,同时指出了隐私保护、模型可解释性等伦理法律问题的重要性,为未来研究提供了方向。 ####
25 5
|
4天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习在图像识别领域的应用,包括基本原理、常用模型和实际案例。我们将探讨如何利用深度学习技术提高图像识别的准确性和效率,并展示一些代码示例。通过阅读本文,您将了解到深度学习在图像识别中的强大潜力和应用价值。
下一篇
无影云桌面