决策树算法之分类回归树 CART(Classification and Regression Trees)【1】

简介: 分类回归树 CART 是决策树家族中的基础算法,它非常直觉(intuitive),但看网上的文章,很少能把它讲的通俗易懂(也许是我理解能力不够),幸运的是,我在 Youtube 上看到了[这个视频](http://1t.click/aMGq),可以让你在没有任何机器学习基础的情况下掌握 CART 的原理,下面我尝试着把它写出来,以加深印象. ## 决策树的结构 下图是一个简单的决策树示

分类回归树 CART 是决策树家族中的基础算法,它非常直觉(intuitive),但看网上的文章,很少能把它讲的通俗易懂(也许是我理解能力不够),幸运的是,我在 Youtube 上看到了这个视频,可以让你在没有任何机器学习基础的情况下掌握 CART 的原理,下面我尝试着把它写出来,以加深印象.

决策树的结构

下图是一个简单的决策树示例:

假设上面这个决策树是一个用来判断病人是否患有心脏病的系统,当病人前来就医时,系统首先会问他:血液循环是否正常?此时如果病人回答是,系统会走左边的分支,并继续问:血管是否不堵塞?如果此时病人回答是,系统便会判断该病人没有患心脏病,反之则会判断他患有心脏病。同理,如果病人的第一个问题的回答是否,则决策树会走到右边的分支,接下来会继续后面的提问,直到来到树的根部,以输出结果。

可见,决策树是一个二叉树结构的模型,它可以被用来解决分类问题或回归问题,该树的非叶子节点本质上是一些条件表达式,用来决定树根到叶子的路径,而叶子节点便是该模型的预测结果。

本文主要介绍如何构建一棵分类树:

如何构建一棵分类树

在构造这棵“判断心脏病的决策树”之前,我们有一堆病人的诊断数据,如下

胸口疼痛 血液循环正常 血管堵塞 患有心脏病
... ... ... ...

刚开始,我们可以使用「胸口疼痛」或者「血液循环正常」或者「血管堵塞」这三个特征中的一个来作为树根,但这样做会存在一个问题:任何上述特征都无法将是否患有心脏病分类得完全正确,如下:

既然没有绝对最优的答案,我们一般会选择一个相对最优的答案,即在这 3 个特征中选择一个相对最好的特征作为树根,如何衡量它们的分类好坏呢?我们可以使用不纯度(impurity)这个指标来度量,例如下图中,P1(蓝色概率分布)相对于 P2(橙色概率分布) 来说就是不纯的。对于一个节点的分类结果来说(上图黄色节点),当然希望它的分布越纯越好。

计算一个分布的不纯度有很多方法,这里使用的是基尼系数(Gini coefficient)——基尼系数越高,越不纯,反之越纯。计算基尼系数的公式很简单:

$$ Gini = 1 - \sum_{i=1}^n p_i^2 $$

这里 $p_i$ 表示离散概率分布中的概率值,我们来算一下上图中 P1 和 P2 的基尼系数

$$ Gini(P1) = 1 - 5 \times 0.2^2 = 0.8 $$

$$ Gini(P2) = 1 - 1^2 - 4 \times 0^2 = 0 $$

可见 P1 的基尼系数更高,其更不纯。

有了以上基础,接下来我们就可以依次计算不同特征分类的基尼不纯度,从中选一个值最低的特征来作为树根,以「胸口疼痛」特征为例,其左边和右边的分类结果的基尼不纯度为:

$$ G(ChestPain_Y) = 1 - (\frac{105}{105+39})^2 - (\frac{39}{105+39})^2 = 0.395 $$

$$ G(ChestPain_N) = 1 - (\frac{34}{34+127})^2 - (\frac{127}{34+127})^2 = 0.336 $$

那么,「胸口疼痛」这个节点整体的不纯度则为左右两个不纯度的加权平均,如下:

$$ G(ChestPain) = \frac{105+39}{105+39+34+125} \times 0.395 + \frac{34+125}{105+39+34+125} \times 0.336 = 0.364 $$

同理,我们也可以计算出「血液循环正常」和「血管堵塞」的基尼不纯度分别为 0.360 和 0.381。相比之下,「血液循环正常」的值最小,该特征便是我们的树根。

在选出了树根后,原来的一份数据被树根分成了两份,后续要做的事情相信很多同学已经猜到了:对于新产生的两份数据,每份数据再使用同样的方法,使用剩下的特征来产生非叶子节点,如此递归下去,直到满足下面两个条件中的任意一条:

  1. 每条路径上所有特征都使用过
  2. 使用新特征没有使分类结果更好(此时不产生新的节点)

上述第 1 个条件很容易理解,我们一起来看下第 2 个条件,假设在建树的过程中,其中一条路径如下:

现在我们需要决定黄色的这部分数据是否还需要被「胸口疼痛」这个特征分类,假设用「胸口疼痛」来分类该数据的结果如下:

接下来我们就要对分类前后做效果对比,依然计算它们的基尼不纯度,在分类前,基尼不纯度为:

$$ G(before) = 1-(\frac{102}{102+13})^2 -(\frac{13}{102+13})^2 = 0.201 $$

而使用「胸口疼痛」分类之后,基尼不纯度为(省去计算细节):

$$ G(ChestPain) = 0.286 $$

显然继续分类只会使结果更糟,所以该分支的建立提前结束了,且分支上只有「血液循环正常」和「血管堵塞」这两个特征来进行分类。

值得一提的是,在建树过程中,即便候选节点的基尼不纯度更低,但如果该指标的降低不能超过一定的阈值,也不建议继续加节点,这种做法可以在一定程度上缓解过拟合的问题。例如:假设该阈值设定为0.05,即便 G(胸口疼痛) 为 0.16,也不继续将「胸口疼痛」作为该分支上的一个节点用来分类,因为此时基尼不纯度只降低了 0.04,低于阈值 0.05。

如何处理离散型数据

上面例子中的数据是只有 0 或者 1 的布尔类型的数据,如果遇到其他类型的数据该怎么处理呢?先来看一下离散型数据,这种类型的数据需要考虑 2 种情况:

  1. 有顺序的离散型数据,例如电商网站把商品的评论分为:好评、中评和差评
  2. 顺序无关的离散型数据,例如商品可能的颜色有:红色、黄色和蓝色

有顺序的离散型数据

假如我们有以下数据,它根据用户对商品的评价来判断用户是否喜欢该商品,其中,对商品的评价被编码为 1(差评)、2(中评) 和 3(好评):

商品评价 是否喜欢
1 0
3 1
2 1
2 0
3 1
1 1
3 0

以上问题实际上等价于选择一个评价值,它能够更好的把人们的喜好分开,这个值可以是 1 或者 2,即当商品评价“小于等于1”或者“小于等于2”时,判断用户不喜欢它,否则为喜欢它,这里没有“小于等于3”这个选项,因为该选项会包含所有的数据,没有分类价值;于是,根据上述两个选项,我们可以对数据做如下 2 种分类:

接下来分别计算它们的基尼不纯度,其中左边的结果 G(1) = 0.486,而右边 G(2) = 0.476;于是,当使用「商品评价」这个特征来做分类时,该特征的切分点(cutoff)为“小于等于2”。

顺序无关的离散型数据

我们再来看一个根据商品的颜色来判断用户是否喜欢该商品的例子,有如下数据:

商品颜色 是否喜欢
RED 1
YELLOW 1
BLUE 0
YELLOW 1
BLUE 1
RED 0

对于以上数据,其作为节点的判断条件有以下 6 种可能:

  1. 红色表示喜欢
  2. 黄色表示喜欢
  3. 蓝色表示喜欢
  4. 红色或黄色表示喜欢
  5. 红色或蓝色表示喜欢
  6. 黄色或蓝色表示喜欢

类似的,我们对每一种可能的分类结果计算其基尼不纯度,然后再选择最低的那个值对应的条件。

如何处理连续型数据

最后我们再来看看特征是连续型数据的情况,例如我们通过人的身高来判断是否患有心脏病,数据如下:

身高 患有心脏病
220 1
180 1
225 1
155 0
190 0

处理这类数据的思路和上面几种做法一致,也就是寻找一个使基尼不纯度最低的 cutoff。具体步骤是,先对身高进行排序,然后求相邻两个数据之间的平均值,以每个平均值作为分界点,对目标数据进行分类,并计算它们的基尼不纯度,如下:

身高 相邻平均值 基尼不纯度
225
222.5 0.4
220
205 0.27
190
185 0.47
180
167.5 0.3
155

所以,在使用「身高」来建树时,其切分点为 205,即”小于205”被判断为未患心脏病,而”不小于205“的会被诊断为患病。

总结

本文主要介绍了 CART 中的分类树的构建算法原理,及遇到了不同类型的数据时,该算法会如何处理。

参考:StatQuest: Decision Trees (http://1t.click/aMGq)

相关文章
|
11天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
35 2
|
2月前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
47 2
|
2月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
48 0
|
3月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
40 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
3月前
|
移动开发 算法 前端开发
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
43 0
|
3月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
40 0
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
4天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。

热门文章

最新文章