表格存储触发C# runtime的函数计算处理示例教程

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
函数计算FC,每月15万CU 3个月
简介:

前言

函数计算(Function Compute)是一个事件驱动的服务,通过函数计算,用户无需管理服务器等运行情况,只需编写代码并上传。函数计算准备计算资源,并以弹性伸缩的方式运行用户代码,而用户只需根据实际代码运行所消耗的资源进行付费。Table Store Stream是用于获取Table Store表中增量数据的一个数据通道,通过创建Table Store触发器,能够实现Table Store Stream和函数计算的自动对接,从而实现表格存储中的表数据发生变更时候定制化的自动处理。具体可以查看表格存储触发函数计算官方教程,但是该官方教程只有python版的代码示例,本教程展示C#版的代码示例。

具体过程

表格存储传给函数event参数是cbor格式,格式如下:

{
    "Version": "string",
    "Records": [
        {
            "Type": "string",
            "Info": {
                "Timestamp": int64
            },
            "PrimaryKey": [
                {
                    "ColumnName": "string",
                    "Value": formated_value
                }
            ],
            "Columns": [
                {
                    "Type": "string",
                    "ColumnName": "string",
                    "Value": formated_value,
                    "Timestamp": int64
                }
            ]
        }
    ]
}
  1. 参考函数计算C# runtime教程, 创建一个dotnetcore2.1的函数, 本教程使用的是Dahomey.Cbor库, 其中有关cbor处理;

下面展示是相关配置和代码:

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
  <OutputType>Exe</OutputType>
  <TargetFramework>netcoreapp2.1</TargetFramework>
</PropertyGroup>

<ItemGroup>
  <PackageReference Include="Dahomey.Cbor" Version="1.5.0" />
  <PackageReference Include="Dahomey.Cbor.AspNetCore" Version="1.4.9" />
  <PackageReference Include="Aliyun.Serverless.Core" Version="1.0.1" />
  <PackageReference Include="Newtonsoft.Json" Version="12.0.3" />
</ItemGroup>

</Project>
using System;
using System.IO; 
using Dahomey.Cbor;
using Dahomey.Cbor.ObjectModel;
using Aliyun.Serverless.Core;
using System.Threading.Tasks;
using Microsoft.Extensions.Logging;
using Newtonsoft.Json;

namespace Dotnet
{
    class Program
    {
        static  void Main(string[] args)
        {

            Console.WriteLine("Hello World!");
        }

    }

    public class fcFileHandler
     {
        public async Task<Stream> Echo(Stream input, IFcContext context)
        {
            ILogger logger = context.Logger;
            try{
            CborObject cborObject = await Cbor.DeserializeAsync<CborObject>(input);

            logger.LogInformation("Handle input: {0}", cborObject.ToString());
            var result = JsonConvert.DeserializeObject<CBORRootInfo>(cborObject.ToString());
            logger.LogInformation("Version: {0}", result.Version);
            logger.LogInformation("Records: {0}", JsonConvert.SerializeObject(result.Records));
            }catch (Exception e){
                Console.WriteLine("{0} Second exception.", e.Message);
            }

            MemoryStream copy = new MemoryStream();
            await input.CopyToAsync(copy);
            copy.Seek(0, SeekOrigin.Begin);

            return copy;

        }

    }

}
using System.Collections.Generic;

namespace Dotnet
{
      public class ColumnsItem
    {
        /// <summary>
        /// 
        /// </summary>
        public string ColumnName { get; set; }
        /// <summary>
        /// 
        /// </summary>
        public string Timestamp { get; set; }
        /// <summary>
        /// 
        /// </summary>
        public string Type { get; set; }
        /// <summary>
        /// 
        /// </summary>
        public string Value { get; set; }
    }

    public class Info
    {
        /// <summary>
        /// 
        /// </summary>
        public string Timestamp { get; set; }
    }

    public class PrimaryKeyItem
    {
        /// <summary>
        /// 
        /// </summary>
        public string ColumnName { get; set; }
        /// <summary>
        /// 
        /// </summary>
        public string Value { get; set; }
    }

    public class RecordsItem
    {
        /// <summary>
        /// 
        /// </summary>
        public List<ColumnsItem> Columns { get; set; }
        /// <summary>
        /// 
        /// </summary>
        public Info Info { get; set; }
        /// <summary>
        /// 
        /// </summary>
        public List<PrimaryKeyItem> PrimaryKey { get; set; }
        /// <summary>
        /// 
        /// </summary>
        public string Type { get; set; }
    }

    public class CBORRootInfo
    {
        /// <summary>
        /// 
        /// </summary>
        public string Version { get; set; }
        /// <summary>
        /// 
        /// </summary>
        public List<RecordsItem> Records { get; set; }
    }
}

2.参考表格存储触发函数计算官方教程 创建对应的ots实例和表,并且配置该表的触发器是一个1中创建的函数,最后效果如下图所示:

20191216113731

3.使用表格存储客户端或者表格存储操作表代码往对应的表中进行数据操作;
本人最后显示效果如下:
注意:需要配置函数的service日志能写入logstore,具体参考函数计算访问日志服务

20191216114227

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
23天前
|
开发框架 搜索推荐 算法
一个包含了 50+ C#/.NET编程技巧实战练习教程
一个包含了 50+ C#/.NET编程技巧实战练习教程
85 18
|
23天前
|
缓存 算法 安全
精选10款C#/.NET开发必备类库(含使用教程),工作效率提升利器!
精选10款C#/.NET开发必备类库(含使用教程),工作效率提升利器!
62 12
|
3月前
|
开发框架 NoSQL MongoDB
C#/.NET/.NET Core开发实战教程集合
C#/.NET/.NET Core开发实战教程集合
|
4月前
|
设计模式 C# 开发者
C#设计模式入门实战教程
C#设计模式入门实战教程
|
6月前
|
分布式计算 Java Serverless
EMR Serverless Spark 实践教程 | 通过 spark-submit 命令行工具提交 Spark 任务
本文以 ECS 连接 EMR Serverless Spark 为例,介绍如何通过 EMR Serverless spark-submit 命令行工具进行 Spark 任务开发。
456 7
EMR Serverless Spark 实践教程 | 通过 spark-submit 命令行工具提交 Spark 任务
|
6月前
|
分布式计算 运维 Serverless
EMR Serverless Spark 实践教程 | 通过 EMR Serverless Spark 提交 PySpark 流任务
在大数据快速发展的时代,流式处理技术对于实时数据分析至关重要。EMR Serverless Spark提供了一个强大而可扩展的平台,它不仅简化了实时数据处理流程,还免去了服务器管理的烦恼,提升了效率。本文将指导您使用EMR Serverless Spark提交PySpark流式任务,展示其在流处理方面的易用性和可运维性。
311 7
EMR Serverless Spark 实践教程 | 通过 EMR Serverless Spark 提交 PySpark 流任务
|
5月前
|
Linux C#
【Azure App Service】C#下制作的网站,所有网页本地测试运行无误,发布至Azure之后,包含CHART(图表)的网页打开报错,错误消息为 Runtime Error: Server Error in '/' Application
【Azure App Service】C#下制作的网站,所有网页本地测试运行无误,发布至Azure之后,包含CHART(图表)的网页打开报错,错误消息为 Runtime Error: Server Error in '/' Application
|
5月前
|
Kubernetes Serverless API
Serverless阿里云函数计算问题之使用示例如何解决
本文探讨了Serverless场景下实例Exec功能的关键特性及其与K8S和Docker的主要区别:实例Exec仅适用于存活实例,且请求不占用并发度,被视为InvokeFunction调用并据此计费。此外,还介绍了阿里云函数计算中实例Exec功能的使用方法,包括通过控制台、API及CLI工具的操作流程,并详细解释了WebSocket连接对计费的影响以及如何在控制台上登录函数实例进行问题排查的具体步骤。
60 0
|
5月前
|
分布式计算 Serverless 数据处理
EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务
Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。
251 0
|
5月前
|
机器学习/深度学习 数据挖掘 C#
ONNX Runtime入门示例:在C#中使用ResNet50v2进行图像识别
ONNX Runtime入门示例:在C#中使用ResNet50v2进行图像识别
122 0

相关产品

  • 函数计算