Java面试 - 什么是单例设计模式,为什么要使用单例设计模式,如何实现单例设计模式(饿汉式和懒汉式)?

简介: 单例设计模式是Java常用的设计模式, 也是Java 面试经常遇到的问题,让我们一起了解一下单例设计模式吧!

什么是单例设计模式?

单例设计模式就是一种控制实例化对象个数的设计模式。

为什么要使用单例设计模式?

使用单例设计模式可以节省内存空间,提高性能。因为很多情况下,有些类是不需要重复产生对象的。
如果重复产生对象的话,会导致大量的内存空间被占用,性能降低。
例如:在程序启动中,加载已保存的数据信息。这些数据信息是由一个单例对象统一读取,其他程序只需要通过这个单例对象获取加载的数据信息即可。

单例设计模式分为饿汉式和懒汉式。饿汉式是在系统加载类的时候就会自动提供类的实例化对象如Computer computer。
懒汉式是在第一次使用的时候进行实例化对象处理。

饿汉式单例设计模式实现源码:

class Computer{

  //1、私有化 Computer 构造函数
  private Computer(){
    System.out.println("私有化 Computer 构造函数");
  }
  public void printInfo(){
    System.out.println("Computer 类使用的就是单例设计模式");
  }

  // 2、调用私有化 Computer 构造函数并将computer属性设置为static
  private static Computer computer = new Computer();

  // 3、提供getCompter()方法,便于调用
  public static Computer getCompter(){
    return computer;
  }
}

public class Demo {

  public static void main(String[] args) {
    // 产生单例对象
    Computer computer = Computer.getCompter();

    // 调用printInfo()方法
    computer.printInfo();
  }
}

运行结果:

私有化 Computer 构造函数
Computer 类使用的就是单例设计模式

饿汉式单例设计模式的实现过程分析:

1、所有新的实例化对象的产生都会调用构造方法,如果无法正常调用构造方法的话,也就不能产生新的实例化对象。
如果想控制实例化对象个数的话,那么就应该控制构造函数。因此首先将该类的构造方法定义为私有方法。

private Computer(){
    System.out.println("私有化Computer 构造函数");
  }

2、类的构造方法私有化后,在类的外部就不能产生实例化对象。但是Private 修饰的构造方法可以在类的内部访问。
如果要访问Private 修饰的构造方法,可以在类的内部调用构造函数。

private Computer computer = new Computer();

3、computer 作为普通属性,只有在实例化对象产生之后才能被调用。由于类的外部无法产生实例化对象,如果想获取
computer 属性,可以将computer 属性设置为static。

private static Computer computer = new Computer();

4、对于private 属性 computer来说,如果想在类的外部获取该属性,则需要通过getComputer()方法获取。

public static Computer getCompter(){
    return computer;
  }

由于饿汉式在类加载的时候就完成了对象实例化,如果程序始终没有用到这个实例化对象,那么就会造成内存空间的浪费。
为了不浪费内存空间,懒汉式是在第一次使用的时候进行实例化对象处理。

懒汉式单例设计模式实现源码:

class Computer{

  //1、私有化 Computer 构造函数
  private Computer(){
    System.out.println("私有化 Computer 构造函数");
  }
  public void printInfo(){
    System.out.println("Computer 类使用的就是单例设计模式");
  }

  // 2、调用私有化 Computer 构造函数并将computer属性设置为static
  private static Computer computer;

  // 3、提供getCompter()方法,便于调用
  public static Computer getCompter(){

    // 懒汉式,按需创建 即在第一次使用的时候进行实例化对象
    if(computer == null){
      computer = new Computer();
    }
    return computer;
  }
}

public class Demo {
  public static void main(String[] args) {
    // 产生单例对象
    Computer computer = Computer.getCompter();

    // 调用printInfo()方法
    computer.printInfo();
  }
}

运行结果:

私有化 Computer 构造函数
Computer 类使用的就是单例设计模式

懒汉式单例设计模式的实现源码分析:

为了避免实例化的对象始终没有被使用,造成内存空间的浪费,所以增加了对实例化对象的判断,
即如果实例化对象为null 则创建实例化对象。

// 懒汉式,按需创建 即只有在第一次使用的时候才进行实例化对象
    if(computer == null){
      computer = new Computer();
    }

但是如果在多线程下,会出现这样的情况即一个线程进入了if 语句, 另一个线程也通过了if语句。
这样就产生了多个实例化对象。 为了避免这样的问题,可以采用双重加锁机制。

双重加锁机制优化懒汉式源码:

class Computer{
  //1、私有化 Computer 构造函数
  private Computer(){
    System.out.println("私有化 Computer 构造函数");
  }

  public void printInfo(){
    System.out.println("Computer 类使用的就是单例设计模式");
  }

  // 2、调用私有化 Computer 构造函数并将computer属性设置为static
  private volatile static Computer computer;

  // 3、提供getCompter()方法,便于调用
  public static Computer getCompter(){
    // 第一次检查
    if(computer == null){
      // 加锁
      synchronized (Computer.class){
        // 第二次检查
        if (computer == null){
          computer = new Computer();
        }
      }
    }
    return computer;
  }
}

public class Demo {
  public static void main(String[] args) {
    // 产生单例对象
    Computer computer = Computer.getCompter();

    // 调用printInfo()方法
    computer.printInfo();
  }
}

运行结果:

私有化 Computer 构造函数
Computer 类使用的就是单例设计模式

双重加锁机制优化懒汉式源码分析:

 // 2、调用私有化 Computer 构造函数并将computer属性设置为static
  private volatile static Computer computer;

  // 3、提供getCompter()方法,便于调用
  public static Computer getCompter(){
    // 第一次检查
    if(computer == null){
      // 加锁
      synchronized (Computer.class){
        // 第二次检查
        if (computer == null){
          computer = new Computer();
        }
      }
    }
    return computer;
  }

1、volatile可以保证多线程下的可见性即保证了子线程的会跟主线程的一致。
2、当thread2,进入第一个if(computer == null) 语句,子线程的computer为空的,thread2释放资源给thread3。
3、当thread3,进入第一个if(computer == null) 语句,子线程的computer为空的,thread3释放资源给thread2。
4、当thread2,进入第二个if(computer == null) 语句,执行computer = new Computer(),实例化对象computer,volatile修饰的变量computer,会马上同步到主线程的变量computer,执行完成后thread2释放资源给thread3。
5、当thread3,进入第二个if (computer == null) 语句,此时子线程的computer不为空,所以thread3不再会重复实例化computer。

目录
相关文章
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
存储 缓存 Java
大厂面试必看!Java基本数据类型和包装类的那些坑
本文介绍了Java中的基本数据类型和包装类,包括整数类型、浮点数类型、字符类型和布尔类型。详细讲解了每种类型的特性和应用场景,并探讨了包装类的引入原因、装箱与拆箱机制以及缓存机制。最后总结了面试中常见的相关考点,帮助读者更好地理解和应对面试中的问题。
316 4
|
设计模式 缓存 Java
面试题:谈谈Spring用到了哪些设计模式?
面试题:谈谈Spring用到了哪些设计模式?
173 2
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
2064 2
|
JSON 安全 前端开发
第二次面试总结 - 宏汉科技 - Java后端开发
本文是作者对宏汉科技Java后端开发岗位的第二次面试总结,面试结果不理想,主要原因是Java基础知识掌握不牢固,文章详细列出了面试中被问到的技术问题及答案,包括字符串相关函数、抽象类与接口的区别、Java创建线程池的方式、回调函数、函数式接口、反射以及Java中的集合等。
191 0
|
设计模式 安全 算法
【Java面试题汇总】设计模式篇(2023版)
谈谈你对设计模式的理解、七大原则、单例模式、工厂模式、代理模式、模板模式、观察者模式、JDK中用到的设计模式、Spring中用到的设计模式
【Java面试题汇总】设计模式篇(2023版)
|
C# Windows 开发者
当WPF遇见OpenGL:一场关于如何在Windows Presentation Foundation中融入高性能跨平台图形处理技术的精彩碰撞——详解集成步骤与实战代码示例
【8月更文挑战第31天】本文详细介绍了如何在Windows Presentation Foundation (WPF) 中集成OpenGL,以实现高性能的跨平台图形处理。通过具体示例代码,展示了使用SharpGL库在WPF应用中创建并渲染OpenGL图形的过程,包括开发环境搭建、OpenGL渲染窗口创建及控件集成等关键步骤,帮助开发者更好地理解和应用OpenGL技术。
1324 0
|
Java 编译器 开发工具
JDK vs JRE:面试大揭秘,一文让你彻底解锁Java开发和运行的秘密!
【8月更文挑战第24天】JDK(Java Development Kit)与JRE(Java Runtime Environment)是Java环境中两个核心概念。JDK作为开发工具包,不仅包含JRE,还提供编译器等开发工具,支持Java程序的开发与编译;而JRE仅包含运行Java程序所需的组件如JVM和核心类库。一个简单的"Hello, World!"示例展示了两者用途:需借助JDK编译程序,再利用JRE或JDK中的运行环境执行。因此,开发者应基于实际需求选择安装JDK或JRE。
225 0
|
算法 Java
【多线程面试题十八】、说一说Java中乐观锁和悲观锁的区别
这篇文章讨论了Java中的乐观锁和悲观锁的区别,其中悲观锁假设最坏情况并在访问数据时上锁,如通过`synchronized`或`Lock`接口实现;而乐观锁则在更新数据时检查是否被其他线程修改,适用于多读场景,并常通过CAS操作实现,如Java并发包`java.util.concurrent`中的类。