Python机器学习基础教程系列

简介: python机器学习基础教程,送给各位爱学的小伙伴

1、《Python机器学习基本概念》

2、《Python机器学习决策树算法》

3、《Python机器学习决策树应用》

4、《Python机器学习最邻近规则分类(KNN)算法理论》

5、《Python机器学习最邻近规则分类(KNN)算法实例》

6、《Python机器学习SVM支持向量机算法理论》

7、《Python机器学习SVM简单应用实例》

8、《Python机器学习SVM人脸识别实例》

9、《Python提取数字图片特征向量》

10、《Python机器学习神经网络算法理论(BP)》

11、《Python实现BP神经网络算法》

12、《Python神经网络识别手写数字实例(digits数据集)》

13、《Python神经网络识别手写数字实例(MNIST图片数据集)》

14、《机器学习简单线性回归模型》

15、《Python机器学习多元线性回归模型》

16、《Python机器学习线性回归分析实例》

17、《机器学习之Logistic回归(非线性回归)》

18、《Python机器学习之Logistic回归梯度下降算法实例(批量/随机)》

文章持续更新......

目录
相关文章
|
1月前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
72 8
|
1月前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
121 7
|
1月前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
51 4
|
1月前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
50 5
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
35 1
|
2月前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
39 1
|
2月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 6
显著性检验是统计学中用于判断样本与总体假设间是否存在显著差异的方法。SciPy的scipy.stats模块提供了执行显著性检验的工具,如T检验,用于比较两组数据的均值是否来自同一分布。通过ttest_ind()函数,可以获取两样本的t统计量和p值,进而判断差异是否显著。示例代码展示了如何使用该函数进行T检验并输出结果。
37 1
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
46 1
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 5
显著性检验用于判断样本与总体假设间的差异是否由随机变异引起,或是假设与真实情况不符所致。SciPy通过scipy.stats模块提供显著性检验功能,P值用于衡量数据接近极端程度,与alpha值对比以决定统计显著性。
39 0