python操作mysql数据库实现增删改查

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介:

Python 标准数据库接口为 Python DB-API,Python DB-API为开发人员提供了数据库应用编程接口。

Python 数据库接口支持非常多的数据库,你可以选择适合你项目的数据库:

GadFly
mSQL
MySQL
PostgreSQL
Microsoft SQL Server 2000
Informix
Interbase
Oracle
Sybase
你可以访问Python数据库接口及API查看详细的支持数据库列表。

不同的数据库你需要下载不同的DB API模块,例如你需要访问Oracle数据库和Mysql数据,你需要下载Oracle和MySQL数据库模块。

DB-API 是一个规范. 它定义了一系列必须的对象和数据库存取方式, 以便为各种各样的底层数据库系统和多种多样的数据库接口程序提供一致的访问接口 。

Python的DB-API,为大多数的数据库实现了接口,使用它连接各数据库后,就可以用相同的方式操作各数据库。

Python DB-API使用流程:

引入 API 模块。
获取与数据库的连接。
执行SQL语句和存储过程。
关闭数据库连接。
什么是MySQLdb?
MySQLdb 是用于Python链接Mysql数据库的接口,它实现了 Python 数据库 API 规范 V2.0,基于 MySQL C API 上建立的。

如何安装MySQLdb?
为了用DB-API编写MySQL脚本,必须确保已经安装了MySQL。复制以下代码,并执行:

!/usr/bin/python

-- coding: UTF-8 --

import MySQLdb
如果执行后的输出结果如下所示,意味着你没有安装 MySQLdb 模块:

Traceback (most recent call last):
File "test.py", line 3, in

import MySQLdb

ImportError: No module named MySQLdb
安装MySQLdb,请访问 http://sourceforge.net/projects/mysql-python ,(Linux平台可以访问:https://pypi.python.org/pypi/MySQL-python)从这里可选择适合您的平台的安装包,分为预编译的二进制文件和源代码安装包。

如果您选择二进制文件发行版本的话,安装过程基本安装提示即可完成。如果从源代码进行安装的话,则需要切换到MySQLdb发行版本的顶级目录,并键入下列命令:

$ gunzip MySQL-python-1.2.2.tar.gz
$ tar -xvf MySQL-python-1.2.2.tar
$ cd MySQL-python-1.2.2
$ python setup.py build
$ python setup.py install
注意:请确保您有root权限来安装上述模块。

数据库连接
连接数据库前,请先确认以下事项:

您已经创建了数据库 TESTDB.
在TESTDB数据库中您已经创建了表 EMPLOYEE
EMPLOYEE表字段为 FIRST_NAME, LAST_NAME, AGE, SEX 和 INCOME。
连接数据库TESTDB使用的用户名为 "testuser" ,密码为 "test123",你可以可以自己设定或者直接使用root用户名及其密码,Mysql数据库用户授权请使用Grant命令。
在你的机子上已经安装了 Python MySQLdb 模块。
实例:

以下实例链接Mysql的TESTDB数据库:

!/usr/bin/python

-- coding: UTF-8 --

import MySQLdb

打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

使用cursor()方法获取操作游标

cursor = db.cursor()

使用execute方法执行SQL语句

cursor.execute("SELECT VERSION()")

使用 fetchone() 方法获取一条数据库。

data = cursor.fetchone()

print "Database version : %s " % data

关闭数据库连接

db.close()
执行以上脚本输出结果如下:

Database version : 5.0.45
创建数据库表
如果数据库连接存在我们可以使用execute()方法来为数据库创建表,如下所示创建表EMPLOYEE:

!/usr/bin/python

-- coding: UTF-8 --

import MySQLdb

打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

使用cursor()方法获取操作游标

cursor = db.cursor()

如果数据表已经存在使用 execute() 方法删除表。

cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")

创建数据表SQL语句

sql = """CREATE TABLE EMPLOYEE (

     FIRST_NAME  CHAR(20) NOT NULL,
     LAST_NAME  CHAR(20),
     AGE INT,  
     SEX CHAR(1),
     INCOME FLOAT )"""

cursor.execute(sql)

关闭数据库连接

db.close()
数据库插入操作
以下实例使用执行 SQL INSERT 语句向表 EMPLOYEE 插入记录:

!/usr/bin/python

-- coding: UTF-8 --

import MySQLdb

打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

使用cursor()方法获取操作游标

cursor = db.cursor()

SQL 插入语句

sql = """INSERT INTO EMPLOYEE(FIRST_NAME,

     LAST_NAME, AGE, SEX, INCOME)
     VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""

try:
# 执行sql语句
cursor.execute(sql)
# 提交到数据库执行
db.commit()
except:
# Rollback in case there is any error
db.rollback()

关闭数据库连接

db.close()
以上例子也可以写成如下形式:

!/usr/bin/python

-- coding: UTF-8 --

import MySQLdb

打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

使用cursor()方法获取操作游标

cursor = db.cursor()

SQL 插入语句

sql = "INSERT INTO EMPLOYEE(FIRST_NAME, \

   LAST_NAME, AGE, SEX, INCOME) \
   VALUES ('%s', '%s', '%d', '%c', '%d' )" % \
   ('Mac', 'Mohan', 20, 'M', 2000)

try:
# 执行sql语句
cursor.execute(sql)
# 提交到数据库执行
db.commit()
except:
# 发生错误时回滚
db.rollback()

关闭数据库连接

db.close()
实例:

以下代码使用变量向SQL语句中传递参数:

..................................
user_id = "test123"
password = "password"

con.execute('insert into Login values("%s", "%s")' % \

         (user_id, password))

..................................
数据库查询操作
Python查询Mysql使用 fetchone() 方法获取单条数据, 使用fetchall() 方法获取多条数据。

fetchone(): 该方法获取下一个查询结果集。结果集是一个对象
fetchall():接收全部的返回结果行.
rowcount: 这是一个只读属性,并返回执行execute()方法后影响的行数。
实例:

查询EMPLOYEE表中salary(工资)字段大于1000的所有数据:

!/usr/bin/python

-- coding: UTF-8 --

import MySQLdb

打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

使用cursor()方法获取操作游标

cursor = db.cursor()

SQL 查询语句

sql = "SELECT * FROM EMPLOYEE \

   WHERE INCOME > '%d'" % (1000)

try:
# 执行SQL语句
cursor.execute(sql)
# 获取所有记录列表
results = cursor.fetchall()
for row in results:

  fname = row[0]
  lname = row[1]
  age = row[2]
  sex = row[3]
  income = row[4]
  # 打印结果
  print "fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \
         (fname, lname, age, sex, income )

except:
print "Error: unable to fecth data"

关闭数据库连接

db.close()
以上脚本执行结果如下:

fname=Mac, lname=Mohan, age=20, sex=M, income=2000
数据库更新操作
更新操作用于更新数据表的的数据,以下实例将 EMPLOYEE 表中的 SEX 字段为 'M' 的 AGE 字段递增 1:

!/usr/bin/python

-- coding: UTF-8 --

import MySQLdb

打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

使用cursor()方法获取操作游标

cursor = db.cursor()

SQL 更新语句

sql = "UPDATE EMPLOYEE SET AGE = AGE + 1 WHERE SEX = '%c'" % ('M')
try:
# 执行SQL语句
cursor.execute(sql)
# 提交到数据库执行
db.commit()
except:
# 发生错误时回滚
db.rollback()

关闭数据库连接

db.close()
删除操作
删除操作用于删除数据表中的数据,以下实例演示了删除数据表 EMPLOYEE 中 AGE 大于 20 的所有数据:

!/usr/bin/python

-- coding: UTF-8 --

import MySQLdb

打开数据库连接

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" )

使用cursor()方法获取操作游标

cursor = db.cursor()

SQL 删除语句

sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)
try:
# 执行SQL语句
cursor.execute(sql)
# 提交修改
db.commit()
except:
# 发生错误时回滚
db.rollback()

关闭连接

db.close()
执行事务
事务机制可以确保数据一致性。

事务应该具有4个属性:原子性、一致性、隔离性、持久性。这四个属性通常称为ACID特性。

原子性(atomicity)。一个事务是一个不可分割的工作单位,事务中包括的诸操作要么都做,要么都不做。
一致性(consistency)。事务必须是使数据库从一个一致性状态变到另一个一致性状态。一致性与原子性是密切相关的。
隔离性(isolation)。一个事务的执行不能被其他事务干扰。即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰。
持久性(durability)。持续性也称永久性(permanence),指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的。接下来的其他操作或故障不应该对其有任何影响。
Python DB API 2.0 的事务提供了两个方法 commit 或 rollback。

实例:

SQL删除记录语句

sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)
try:
# 执行SQL语句
cursor.execute(sql)
# 向数据库提交
db.commit()
except:
# 发生错误时回滚
db.rollback()
对于支持事务的数据库, 在Python数据库编程中,当游标建立之时,就自动开始了一个隐形的数据库事务。

commit()方法游标的所有更新操作,rollback()方法回滚当前游标的所有操作。每一个方法都开始了一个新的事务。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
21天前
|
SQL 关系型数据库 API
HarmonyOs开发:关系型数据库封装之增删改查
每个方法都预留了多种调用方式,比如使用callback异步回调或者使用Promise异步回调,亦或者同步执行,大家在使用的过程中,可以根据自身业务需要进行选择性调用,也分别暴露了成功和失败的方法,可以针对性的判断在执行的过程中是否执行成功。
84 13
|
26天前
|
SQL 存储 关系型数据库
MySQL/SqlServer跨服务器增删改查(CRUD)的一种方法
通过上述方法,MySQL和SQL Server均能够实现跨服务器的增删改查操作。MySQL通过联邦存储引擎提供了直接的跨服务器表访问,而SQL Server通过链接服务器和分布式查询实现了灵活的跨服务器数据操作。这些技术为分布式数据库管理提供了强大的支持,能够满足复杂的数据操作需求。
79 12
|
2月前
|
关系型数据库 MySQL 数据库连接
python脚本:连接数据库,检查直播流是否可用
【10月更文挑战第13天】本脚本使用 `mysql-connector-python` 连接MySQL数据库,检查 `live_streams` 表中每个直播流URL的可用性。通过 `requests` 库发送HTTP请求,输出每个URL的检查结果。需安装 `mysql-connector-python` 和 `requests` 库,并配置数据库连接参数。
140 68
|
1月前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
264 15
|
2月前
|
关系型数据库 MySQL Java
Servlet+MySQL增删改查 原文出自[易百教程] 转载请保留原文链接: https://www.yiibai.com/geek/1391
对于任何项目开发,创建,读取,更新和删除(CRUD)记录操作是应用程序的一个最重要部分。
83 20
|
3月前
|
关系型数据库 MySQL 数据处理
探索Python中的异步编程:从asyncio到异步数据库操作
在这个快节奏的技术世界里,效率和性能是关键。本文将带你深入Python的异步编程世界,从基础的asyncio库开始,逐步探索到异步数据库操作的高级应用。我们将一起揭开异步编程的神秘面纱,探索它如何帮助我们提升应用程序的性能和响应速度。
|
3月前
|
Web App开发 SQL 数据库
使用 Python 解析火狐浏览器的 SQLite3 数据库
本文介绍如何使用 Python 解析火狐浏览器的 SQLite3 数据库,包括书签、历史记录和下载记录等。通过安装 Python 和 SQLite3,定位火狐数据库文件路径,编写 Python 脚本连接数据库并执行 SQL 查询,最终输出最近访问的网站历史记录。
57 4
|
3月前
|
前端开发 Java 数据库连接
javamvc配置,增删改查,文件上传下载。
【10月更文挑战第4天】javamvc配置,增删改查,文件上传下载。
45 1
|
3月前
|
存储 NoSQL API
使用Py2neo进行Neo4j图数据库的增删改查操作
使用Py2neo进行Neo4j图数据库的增删改查操作
150 5
|
3月前
|
SQL 机器学习/深度学习 数据采集
SQL与Python集成:数据库操作无缝衔接22.bijius.com
自动化数据预处理:使用Python库(如Pandas)自动清洗、转换和准备数据,为机器学习模型提供高质量输入。 实时数据处理:集成Apache Kafka或Amazon Kinesis等流处理系统,实现实时数据更新和分析。